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Abstract—This paper continues the review of the Serret–Andoyer (SA) canonical formalism
in rigid-body dynamics, commenced by [1], and presents some new results. We discuss the ap-
plications of the SA formalism to control theory. Considerable attention is devoted to the geometry
of the Andoyer variables and to the modeling of control torques. We develop a new approach to
Stabilization of rigid-body dynamics, an approach wherein the state-space model is formulated
through sets of canonical elements that partially or completely reduce the unperturbed Euler–
Poinsot problem. The controllability of the system model is examined using the notion of accessibil-
ity, and is shown to be accessible. Based on the accessibility proof, a Hamiltonian controller is derived
by using the Hamiltonian as a natural Lyapunov function for the closed-loop dynamics. It is shown
that the Hamiltonian controller is both passive and inverse optimal with respect to a meaningful
performance-index. Finally, we point out the possibility to apply methods of structure-preserving
control using the canonical Andoyer variables, and we illustrate this approach on rigid bodies
containing internal rotors.

MSC2000 numbers: 37N05, 37N35, 93D15
DOI: 10.1134/S1560354707040041

Key words: nonlinear stabilization, Hamiltonian control systems, Lyapunov control

1. INTRODUCTION

The canonical form of the forced rigid-body-spin problem is ubiquitous in astronomical applica-
tions [8–12]. However, most engineering textbooks dealing with rigid-body dynamics do not discuss it.
This is true for both classical [13, 14] and more recent [15] textbooks. The only engineering-oriented
publication that directly utilized the Andoyer variables was that of Zanardi et al. [16] who adopted
a simplified version of the Andoyer formalism for deriving an attitude controller for a fully actuated
axisymmetric rigid body, and that of Giacaglia and Jefferys [17], which developed the equations of motion
of a space station. Thus, application of the Andoyer variables to Stabilization and control in rigid-body
dynamics so far remains a fallow land.

On the other hand, Stabilization of rigid-body dynamics in the Eulerian formulation has been
extensively studied in the literature. Several successful approaches to the problem, such as the Energy-
Casimir method [18], Riemannian geometric mechanics [19], passivity-based control [20] and optimal
control [21] have been developed. The control-theoretic problems arising in this context, such as
global Stabilization [22], smooth Stabilization [23], output feedback Stabilization [24], robust Stabiliza-
tion [25], adaptive control [26] and sliding-mode control [27] have been widely explored as well. These
works used several variants of kinematic attitude representations [28], but none has utilized the special
features offered by the canonical formulation.
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The purpose of this paper will be twofold: We shall provide a coherent portrayal of the Andoyer
variables geometry based on the theory of Hamiltonian systems on Lie groups; and we will fill the
existing gap in the control literature by using the SA modelling of rigid-body dynamics in order to derive
nonlinear asymptotically Stabilizing controllers for an arbitrarily-shaped rigid body. To this end, we shall
first present the transformation from the Eulerian variables to the SA formalism, and shall develop
a state-space model in terms of the Andoyer variables. We shall also show, following the work of
[29], how the Serret–Andoyer transformation may be derived using symplectic (Marsden–Weinstein)
reduction. We shall then study the controllability of the rigid-body dynamics in this formulation by using
the accessibility rank condition. Based on the controllability analysis, a Hamiltonian controller will be
developed by using the Hamiltonian as a natural Lyapunov function for the closed-loop system. It will
be demonstrated that the canonical formalism yields a straightforward characterization of important
features such as passivity and inverse optimality. Finally, we will demonstrate how the Energy-Casimir
method may be used for Stabilization of a rigid body/rotor system about its intermediate axis.

2. GEOMETRY: GENERALITIES IN HAMILTONIAN SYSTEMS WITH SYMMETRY

We now discuss some of the geometry of the Andoyer variables following the work in [29].

We firstly recall in this section some general notions concerning Hamiltonian systems on Lie groups.
We shall employ hereafter standard terminology and methodology of geometric methods in control and
dynamics, and we recommend, among others, the texts of Abraham and Marsden [2], Arnold [3], and
Marsden and Ratiu [7] for in-depth syntheses of the subject. Nevertheless, we shall highlight here some
elements of the theory of Hamiltonian systems on SO(3) that are relevant to the development of our
subsequent results.

Consider the Lie group SO(3), i.e., the group of real 3 × 3 orthogonal matrices with determinant
equal to 1. Let so(3) denote its Lie algebra, and so(3)∗ its dual. Recall that elements of so(3) are 3 × 3
skew-symmetric matrices, and the algebra bracket is the usual matrix commutator bracket, [V,W] =
VW − WV.

As in [1, Sect. 2], let the hat map ̂ : R3 → so(3) denote the usual Lie algebra isomorphism that
identifies (so(3), [ , ]) with (R3,×):

v = (v1, v2, v3) �→ v̂ =

⎡⎢⎢⎢⎣
0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤⎥⎥⎥⎦. (1)

By duality, so(3)∗ is also identified with R3.

With the above identification, the classical definitions of body and spatial angular velocities ω and Ω,
respectively, have the following geometric meaning: the pair (R, ω̂) is the body representation, i.e., left-
translation to the identity, of tangent vectors in TSO(3). Indeed, Ṙ ∈ TRSO(3) has the form Ṙ = Rω̂.
Thus, left-translation gives TRL−1

R ·Rω̂ = R−1Rω̂ = ω̂. Likewise, the pair (R, Ω̂) is the spatial
representation of tangent vectors by right-translation to the identity. By duality, the body and spatial
angular momentum vectors g and G give the body and spatial representations, respectively, of covectors
in T ∗SO(3). The pairing between tangent vectors and covectors is then given by the usual dot product
on R3: 〈(R,g), (R, ω̂)〉 = g · ω. Arnold [3] gave a clarification of the various representations for general
Lie groups, and showed that they can be applied to fluid mechanics. See also [7] for an exposition.

A Hamiltonian function H on T ∗SO(3) is said to be left-invariant if H◦L∗
R = H for all R ∈ SO(3),

where L∗ denotes the cotangent lifted action. In the body representation, left-invariance means that H
depends only on the body angular momentum, i.e., H : SO(3)× so(3)∗ → R : (R,g) �→ H(g). The fibre
derivative of H is the map FH : SO(3) × so(3)∗ → SO(3) × so(3) : (R,g) �→ (R,∇gH). H is said to
be hyperregular if FH is a diffeomorphism. The following is an important lemma, materials for the proof
of which can be found in [2, Sect. 4.4].
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Lemma 1. Let H : SO(3) × so(3)∗ → R be left-invariant, then the associated Hamiltonian vector
field in body coordinates is

XH(R,g) =
(
R · ∇̂gH , g ×∇gH

)
. (2)

Moreover, if H is hyperregular, the associated left-invariant Lagrangian L : SO(3) × so(3) → R
is given in body coordinates by

L(ω) = g · ω −H(g), (3)

where g is given in terms of ω by the Legendre transform FL : SO(3) × so(3) → SO(3) × so(3)∗ :
(R,ω) �→ (R,g) = (R,∇ωL), with (FL)−1 = FH.

The second component of XH is sometimes called the Euler vector field, and the dynamical
equations

ġ = g ×∇gH (4)

are called Euler–Poinsot equations. In particular, the classical Lagrangian of free rigid body dynamics
is given in body coordinates as L(ω) = 1

2ω · Iω. Thus, the body angular momentum is the image
by the Legendre transform of the body angular velocity, FL : ω �→ g = Iω, and the classical spatial
angular momentum is its spatial representation.

In general, given a hyperregular Hamiltonian H (or, equivalently, a hyperregular Lagrangian L),
one can define a generalized body angular momentum by the Legendre transform, i.e., g = ∇ωL,
where ω is the classical body angular velocity. H in our setting will generally be different from the
classical Hamiltonian. For example, for the controlled rigid body, H can be called the controlled
Hamiltonian, and L the controlled Lagrangian, to be discussed in Section 6.

We conclude this section with the following property related to the 3-1-3 Euler angle representation.
This property is crucial for the generalization of the Serret–Andoyer transformation discussed in the
next section.

Lemma 2. Let H ∈ F(SO(3) × so(3)∗) be a left-invariant, hyperregular Hamiltonian, and let L
be the associated Lagrangian. Then, choosing any arbitrary spatial frame and the set (φ, θ, ψ)
of 3-1-3 Euler angles, the conjugate momenta (Φ,Θ,Ψ) associated with L are related to the
covector body representation, for all (R,g) ∈ SO(3) × so(3)∗, by

Φ = (g1 sin ψ + g2 cos ψ) sin θ + g3 cos θ, (5a)

Θ = g1 cos ψ − g2 sin ψ, (5b)

Ψ = g3. (5c)

Moreover, in the chosen spatial frame and ignoring the singular points corresponding to θ = 0,
the spatial representation, G = Rg, is then given in terms of these momenta by

G1 = Θ cos φ +
(

Ψ − Φ cos θ

sin θ

)
sin φ, (6a)

G2 = −Θ sinφ −
(

Ψ − Φ cos θ

sin θ

)
cos φ, (6b)

G3 = Φ. (6c)

Proof. By definition, Φ = ∂L/∂φ̇ = ∇ωL ·Dφ̇ω = g · Dφ̇ω. Substituting the expression

ω =

⎡⎢⎢⎢⎣
θ̇ cos ψ + φ̇ sin ψ sin θ

−θ̇ sinψ + φ̇ cos ψ sin θ

φ̇ cos θ + ψ̇

⎤⎥⎥⎥⎦ (7)
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of the body angular velocity into Φ = g ·Dφ̇ω, one easily obtains (5a). Expressions (5b) and (5c)
can be similarly obtained. Finally, (6) is obtained by inverting (5) to yield g in terms of (Φ,Θ,Ψ),
and transforming to the spatial frame with R given by

R(φ, θ, ψ) =

⎡⎢⎢⎢⎣
cψcφ − sψcθsφ cψsφ + sψcθcφ sψsθ

−sψcφ − cψcθsφ −sψsφ + cψcθcφ cψsθ

sθsφ −sθcφ cθ

⎤⎥⎥⎥⎦. (8)

�

Remark 1. The variables (φ, θ, ψ,Φ,Θ,Ψ) are a set of local coordinates for T ∗SO(3). Hence, Lemma 2
simply relates these coordinates with the vectorial representations, both in the body and in space.
Equations (5) and (6) are true for any left-invariant, hyperregular Hamiltonian. In particular, they are
true for the free rigid body Hamiltonian.

3. GENERALIZED SERRET–ANDOYER TRANSFORMATION

In this section, we shall reconstruct the Serret–Andoyer transformation by employing the notion of
symplectic (Marsden–Weinstein) reduction. This notion is essentially based on that of momentum
maps, which are quantities generated by symmetry (group actions) on a Poisson manifold. By Noether’s
theorem, momentum maps are conserved along the trajectories of a Hamiltonian vector field when
the Hamiltonian is itself invariant under the symmetry. The conserved quantity defines a ‘slice’ of the
manifold which, under further assumption of equivariance, can be projected onto a smooth manifold, the
reduced phase space, of lesser dimension equipped with a unique symplectic structure. The trajectories
of the original Hamiltonian vector field are thus projected onto those of a reduced Hamiltonian vector field
on the reduced phase space. The Serret–Andoyer transformation is none other than the computation
in Eulerian coordinates of this process of reduction. In fact, it generalizes to rigid motions with left-
invariant, hyperregular Hamiltonians. But, first, we shall introduce materials essential to the discussion.

3.1. Symplectic (Marsden–Weinstein) Reduction of T ∗SO(3)

Let G be a Lie group and and let g denote its Lie algebra. Moreover, let P be a Poisson manifold,
i.e., a manifold with a Poisson bracket {, } on F(P) = C∞(P) such that (F(P), {, }) is a Lie algebra
and {AB,C} = {A,C}B + A{B,C} for all A, B and C ∈ F(P). Let G act on P (on the left) by
Poisson maps, G × P → P : (ρ, q) �→ Lρ(q) = ρ · q, i.e., Lρ preserves the Poisson bracket for all group
element ρ ∈ G: {A,B} ◦ Lρ = {A ◦ Lρ, B ◦ Lρ} for all A and B ∈ F(P). To this action corresponds an
infinitesimal action of g on P, i.e., the vector field

ξP(q) =
d

dt

∣∣∣∣
t=0

[
etξ · q

]
, (9)

q ∈ P, ξ ∈ g.

Definition 1. A map J : P → g∗ is called a momentum map if X〈J,ξ〉 = ξP for all ξ ∈ g. Moreover,
J is said to be Ad*-equivariant if J ◦ Lρ = Ad∗

ρ ◦ J for all ρ ∈ G.

The linear map Ad∗ : g∗ → g∗ is the co-adjoint action of G on g∗ (see [7] for the definition). For
G = SO(3) one has:

Lemma 3. The co-adjoint action of SO(3) on so(3)∗ � R3 is the usual coordinate transformation
in R3, Ad∗

R−1(g) = Rg for all R ∈ SO(3), g ∈ so(3)∗.

Theorem 1. Let P = T ∗G be equipped with the canonical symplectic form and, thus, with the
associated Poisson structure. Then, the left–Action of G on T ∗G is Poisson. Moreover, the Ad*-
equivariant momentum mapping of this action is given in body coordinates by J(ρ, µ) = Ad∗

ρ−1(µ)
[2, pp. 317–318].
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Note in particular that for G = SO(3), Lemma 3 and Theorem 1 imply that the associated momentum
map is simply the (generalized) angular momentum represented in the inertia 3-space.

Theorem 2 (Noether’s Theorem). If the action of G on P is Poisson and admits a momentum
map J : P → g∗, and if the smooth function H : P → R is G-invariant, i.e., H ◦ Lρ = H for all
ρ ∈ G, then J is a constant of the motion for XH, i.e., J ◦ φt = J, where φt is the flow of XH.

The following specializes Theorems 1 and 2 to left-invariant Hamiltonian vector fields on cotangent
bundles.

Corollary 1. Let H : T ∗G → R be left-invariant. Then, the spatial representation of the momen-
tum map J is invariant along the trajectories of XH.

Corollary 1 generalizes the classically known fact that the angular momentum of a free rigid body
is conserved in space. Now, let G = SO(3), let G ∈ so(3)∗ be given, and let MG = J−1(G) denote the
momentum level set corresponding to G. In this case, MG is a smooth manifold. Since the momentum
map J is equivariant (Theorem 1), the stationary subgroup GG ⊂ SO(3) given by

GG = {R ∈ SO(3) : Ad∗R−1(G) = G}
leaves MG fixed.

Proposition 1. The stationary subgroup GG for the rigid body problem is the 1-parameter
subgroup of rotations in the direction of the spatial angular momentum G.

Proof. Let R ∈ GG. Then, Ad∗
R−1(G) = G or, equivalently, RG = G. Hence, R is a member of the sta-

tionary subgroup if and only if G is an eigenvector of R (with an eigenvalue of 1), i.e. R is a rotation
in the direction of G. �

The quotient manifold FG = MG/GG is a symplectic manifold endowed with the unique symplectic
form ωG(α, β) = ω(α′, β′), where ω is the canonical symplectic form on T ∗SO(3), and the vectors
α and β tangent to FG at [x] ∈ FG are obtained by projection of some α′ and β′ tangent to MG

at x [3]. FG is known as the reduced phase space. Given a left-invariant Hamiltonian on T ∗SO(3),
define the reduced Hamiltonian hG : FG → R by H|MG

= hG ◦ πG, where πG is the projection
πG : MG → FG. Then, the trajectories of XH project to those of XhG

. One therefore obtains, as an
image by reduction of the original Hamiltonian system, another Hamiltonian system on the reduced
phase space with the above-mentioned symplectic structure.

By Lemma 2, given H left-invariant and hyperregular, MG can be characterized in Eulerian
coordinates by the values of (φ, θ, ψ,Φ,Θ,Ψ) satisfying (6) for G fixed. Moreover, to factor out the
action of GG on MG, one recalls that φ is ignorable in H (see Eq. (23) in [1]) for an arbitrarily chosen
spatial frame. We may always choose a spatial frame such that the axis s3 is parallel to G. In other
words, consider G ∼= (0, 0, G) where G ∈ R is a nonzero constant. Substituting into (6) and ignoring
the singular points corresponding to θ = 0 yields the following result.

Proposition 2. Let H ∈ F(SO(3)× so(3)∗) be a left-invariant, hyperregular Hamiltonian, and let
G ∈ so(3)∗ be fixed. Choose a spatial frame in which G ∼= (0, 0, G), G being a nonzero constant.
Relative to this spatial frame, denote the 3-1-3 Euler angles by (φ, θ, l) and their conjugate
momenta by (Φ,Θ, L). Then the momentum level set MG is locally given by

Θ = 0, cos θ = L/G, Φ = G, (10)

(φ, l, L) ∈ (0, 2π) × (−π, π) × (−G,G). Moreover, the map πG : MG → FG is the coordinate pro-
jection (φ, l, L) �→ (l, L).

Proof. By the above choice of spatial frame, (6c) yields immediately Φ = G. Renaming (ψ,Ψ)
with (l, L), (6a) and (6b) therefore yield Θ = 0 and L = G cos θ since G1 = G2 = 0. This shows that MG

is a 3-dimensional manifold with local coordinates (φ, l, L). Finally, by Proposition 1, elements of the
stationary subgroup GG are rotations of angle φ about s3 leaving the variables (l, L) fixed. This shows
that πG is the coordinate projection along φ. �
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Remark 2. Geometrically, the Andoyer variables (l, L) are the third direction cosine and conjugate
momentum in the 3-1-3 Euler angle representation associated with the specially chosen spatial frame,
as we mentioned before; in fact, one easily verifies that (l, L) are exactly the same geometric objects
as those, by the same names, that result from the classical Serret–Andoyer transformation described
in [1, §2]. Moreover, (10) reproduces the classical transformation.

3.2. The Andoyer Variables as Canonical Coordinates of the Co-Adjoint Orbit

The reduced phase space FG can be identified with the orbit OG of G ∈ so(3)∗ under the co-adjoint
action [3]. Indeed, the projection πG has the following expression in body coordinates:

πG(R,g) = Ad∗
R ◦ J(R,g) = Ad∗

RG = g,

for all (R,g) ∈ MG. Hence, OG is the body representation of MG. Schematically, this can be
represented by

MG

πG J
���������

���������
�

co-adjoint actionFG � OG ⊂ so(3)∗ {G} ⊂ so(3)∗

More precisely, OG is given by

OG = {g ∈ R3 : g = R−1G, R ∈ SO(3)} = {g ∈ R3 : ‖g‖ = ‖G‖},
i.e., OG is the sphere traced by body angular momentum vectors that have magnitude ‖G‖, classically
known as the momentum sphere. OG is a symplectic manifold with the unique symplectic forms ω±,
called Kostant–Kirillov symplectic forms, given by

ω±
g (v̂so(3)∗(g), ŵso(3)∗(g)) = ±g · (v × w) , (11)

g ∈ OG, v, w ∈ R3, where tangent vectors to OG have the form v̂so(3)∗(g) = v × g. See [7] for an
exposition; see also [3].

Proposition 3. The Andoyer variables (l, L) given in Proposition 2 define a local chart UG :
(−π, π) × (−G,G) → OG given by

g = UG(l, L) =
(√

G2 − L2 sin l,
√

G2 − L2 cos l, L
)
. (12)

Moreover, (l, L) are canonical coordinates with respect to the left (−) Kostant–Kirillov symplec-
tic form.

Proof. As remarked above, OG is the body representation of MG. Substituting (10), which de-
fines MG, into the expression for body angular momentum, yields (12) after eliminating θ and renam-
ing (ψ,Ψ) with (l, L). Differentiating (12) yields

ġ1 = − sin l√
G2 − L2

LL̇ +
√

G2 − L2 cos ll̇ = − sin l√
G2 − L2

L̇g3 + l̇g2, (13)

ġ2 = − cos l√
G2 − L2

LL̇ −
√

G2 − L2 sin l l̇ = − cos l√
G2 − L2

L̇g3 − l̇g1, (14)

ġ3 = L̇, (15)

i.e., tangent vectors to OG have the form ġ = v × g, where

v = (
cos l√

G2 − L2
L̇ , − sin l√

G2 − L2
L̇ , −l̇).
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Substituting into (11) gives

ω−
g (v1 × g,v2 × g) = −g · (v1 × v2)

= −

⎡⎢⎢⎢⎣
√

G2 − L2 sin l
√

G2 − L2 cos l

L

⎤⎥⎥⎥⎦ ·

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

cos l√
G2−L2

L̇1

− sin l√
G2−L2

L̇1

−l̇1

⎤⎥⎥⎥⎦ ×

⎡⎢⎢⎢⎣
cos l√
G2−L2

L̇2

− sin l√
G2−L2

L̇2

−l̇2

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

= l̇1L̇2 − l̇2L̇1

= dl ∧ dL
(
(l̇1, L̇1), (l̇2, L̇2)

)
,

which proves that (l, L) are canonical local coordinates. �
Remark 3. The Andoyer variables as geometric objects thus have two meanings. On the one hand, they
are Eulerian coordinates as mentioned in Remark 2. On the other hand, by Proposition 3, they locally
canonically coordinatise the 2-dimensional symplectic manifold OG. In particular, (l, L) can be viewed
as the ‘longitude’ and ‘latitude’ on the momentum sphere. In addition, the canonical symplectic form
can be viewed as the area element dl ∧ dL that is oriented inward, which corresponds to the (−) sign
of the left Kostant–Kirillov symplectic form.

3.3. Main Result
As an immediate result of Propositions 2 and 3, the Serret–Andoyer transformation can be general-

ized for any Hamiltonian system on T ∗SO(3) with a left-invariant, hyperregular Hamiltonian. Indeed,
identifying the reduced phase space with the co-adjoint orbit, the reduced Hamiltonian system lives
on the latter. Since the Andoyer variables are canonical coordinates of the co-adjoint orbit, dynamics
of the reduced system are thus given in canonical symplectic form in these variables.

Theorem 3 (The generalized Serret–Andoyer transformation). Let H ∈ F(SO(3) × so(3)∗) be
a left-invariant, hyperregular Hamiltonian, and let G ∈ so(3)∗ be the conserved spatial mo-
mentum. Under the conditions of Proposition 2, the reduced Hamiltonian hG is locally given
in the Andoyer variables by

hG(l, L) = H ◦ UG(l, L), (16)

(l, L) ∈ (−π, π) × (−L,L), where UG is defined by (12). The reduced dynamics are then given
in canonical form, that is, l̇ = ∂hG/∂L, L̇ = −∂hG/∂l. Moreover, relative to the spatial frame
defined in Proposition 2, the integral solution in SO(3) is characterized by the 3-1-3 Euler angles
(φ, θ, l), with cosθ = L/G and φ =

∫
∂H/∂Φ|MG

dt.

Remark 4.

1. The last equality, φ =
∫

∂H/∂Φ|MG
dt, results from the fact that φ is ignorable for H left-

invariant. Note that we are taking the restriction of ∂H/∂Φ on the momentum level set, MG,
according to (10). Since ∂H/∂Φ|MG

is a function solely of (l, L),
∫

∂H/∂Φ|MG
dt is a line

integral when (l(t), L(t)) are available.

2. The construction leading to Theorem 3 shows that the Serret–Andoyer transformation is the com-
putation in Eulerian coordinates of the symplectic reduction associated with the lifted left–Action
of SO(3) on T ∗SO(3). In particular, the choice by Serret for the axis k to be in the direction
of the spatial angular momentum yields precisely the conditions of Proposition 2.

3. The result of Theorem 3 provides a reduced representation of the class of systems in question.
This representation is given in a two-dimensional phase space which one can think of as the
unit circle S1. This simplifies the numerical integration of the equations of motion to that of S1

dynamics. One then reconstructs the full dynamics on T ∗SO(3) by solving, in closed form,
θ = arccos(L/G) on the one hand, and taking the line integral φ =

∫
∂H/∂Φ|Mpdt on the other

hand.
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Example 1 (The classical Serret–Andoyer transformation). One recovers immediately the re-
sults for the free rigid body. Indeed, as mentioned in Remark 2, (l, L) are the same geometric
objects as encountered in the classical transformation which is then reproduced by the charac-
terization according to (10) of the reduced phase space. Finally, substituting the free rigid body
Hamiltonian, H = (I−1g) · g, into (16) for g given by (12) yields

H = hG(l, L) =
1
2

(
s2
l

I1
+

c2
l

I2

)
(G2 − L2) +

L2

2I3
, (17)

which is the SA Hamiltonian (cf. [1]).

Theorem 3 generalizes the Serret–Andoyer transformation to a large class of rigid motions other
than the usual one. In particular, one can consider rigid bodies subject to control by means of internal
torques. The presence of control a priori breaks the original symmetry of the phase space, which now
consists of T ∗SO(3) and the shape space. The basic idea is that, if the control is Hamiltonian and
preserves the symmetry on T ∗SO(3), so that the motion of the main body or base of the controlled system
becomes that of a new (controlled) left-invariant Hamiltonian vector field on T ∗SO(3), then Noether’s
theorem still holds. A controlled momentum vector can then be found that is preserved in space. In the
case where the Hamiltonian is also hyperregular, the results of Section 3 can then be applied, yielding
a set of Andoyer variables for the controlled motion of the main body.

This methodology will be illustrated in Section 6. In the following section, we embark on our quest for
Stabilizing rigid body dynamics using the SA setup. We do not restrict ourselves at this moment to deal
with structure-preserving control; this will be dwelt upon in subsequent sections.

4. MODELLING CONTROL INPUTS
The Hamiltonian modelling naturally accommodates control torque inputs. Letting uS be a control

torque vector written in SA coordinates, we can determine its effect on the canonical dynamics by
utilizing the Euler–Lagrange equations

d

dt

∂L
∂q̇

− ∂L
∂q

= uS (18)

where

L = pT q̇ −H = Gg + Hh + Ll −H. (19)

The resulting Hamilton equations, which include the effect of an external torque, are straightforwardly
obtained by substitution of (19) into (18),

q̇ =
∂H
∂p

, (20)

ṗ = −∂H
∂q

+ uS . (21)

However, Eqs. (20)–(21) are not useful for practical applications, due to the fact that the control torques
must be applied in body axes. We therefore need to model the effect of the control torque on the body
angular rates, and then transform into Andoyer variables. To this end, we shall first note that the
controlled Euler–Poinsot equations under the effects of a control torque in body axes, u, are given
by

ġ = g ×∇gH + u. (22)

Substituting the expressions (12) of g given in Andoyer variables, as well as Eqs. (13)–(15) into (22),
and solving for l̇, Ġ, L̇, yields modified expressions for these derivatives reflecting the effects of u:

l̇ = L

(
1
I3

− s2
l

I1
− c2

l

I2

)
+ wT

1 u, (23)

Ġ = wT
2 u, (24)

L̇ = (L2 − G2)slcl

(
1
I1

− 1
I2

)
+ wT

3 u, (25)
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where the vector fields w1, w2, w3 are given by

w1 =
1√

G2 − L2

⎡⎢⎢⎢⎣
cl

−sl

0

⎤⎥⎥⎥⎦, w2 =
1
G

⎡⎢⎢⎢⎣
sl

√
G2 − L2

cl

√
G2 − L2

L

⎤⎥⎥⎥⎦, w3 =

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦. (26)

The mapping of control inputs onto the remaining variables, g, h,H , can be found by utilizing
the kinematic relations given by [1]. After some algebra, we arrive at the following expressions:

ġ = G

(
s2
l

I1
+

c2
l

I2

)
+ cT

1 u, (27)

ḣ = cT
2 u, (28)

Ḣ = cT
3 u, (29)

where

c1 =
1

G2
√

G2 − H2

⎡⎢⎢⎢⎢⎢⎣
−LGcl

√
G2 − H2√

G2 − L2
− GHclcg + HLslsg

Lsl

√
G2 − H2

G
√

G2 − L2
+ Hslcg

G + HLclsg

G2

−Hsg

√
G2 − L2

G2

⎤⎥⎥⎥⎥⎥⎦, (30)

c2 =
1

G
√

G2 − H2

⎡⎢⎢⎢⎢⎣
Gclcg − Lslsg

−Gslcg − Lclsg

√
G2 − L2sg

⎤⎥⎥⎥⎥⎦, (31)

c3 =
√

G2 − H2

G2

⎡⎢⎢⎢⎣
Gclsg + Hsl

√
G2 − L2

√
G2 − H2 + Lslcg

−Gslsg + Hcl

√
G2 − L2

√
G2 − H2 + Lclcg

√
G2 − L2cg − LH

⎤⎥⎥⎥⎦. (32)

In this paper, we shall be solely interested in controlling the Andoyer variables l, G,L. A one-way
coupling exists between the kinematics and the dynamics under the SA setup, meaning that the
variables l, G,L affect g, h,H but the converse does not hold. The effect of control inputs on the full
6-dimensional state-space will be dwelt upon in a future work.

Consequently, the state vector in our problem is given by x = [l, G,L]T , and the state space is X =
S1 × S, where S = R�0 × R (in the uncontrolled case, S is the foliation {(g1, g2, g3)|g2

1 + g2
2 + g2

3 =
G2}). The state-space dynamics can be now written as

I(x, u) : ẋ = f(x) + W (x)u (33)

where f : X → R3 is the vector field

f(x) =

⎡⎢⎢⎢⎢⎣
L

(
1
I3

− s2
l

I1
− c2

l
I2

)
0

(L2 − G2)slcl

(
1
I1

− 1
I2

)
⎤⎥⎥⎥⎥⎦ (34)
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and

W (x) =

⎡⎢⎢⎢⎢⎢⎢⎣

cl√
G2 − L2

− sl√
G2 − L2

0

sl

√
G2 − L2

G
cl

√
G2 − L2

G
L
G

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦. (35)

It is assumed that the control input u = [u1, u2, u3]T is admissible, viz. a measurable, bounded
function u : [0, ∞)→R3. As usual, we say that an admissible input u is a feedback control law when
∃K : X →R3 such that u = K(x).

The equilibria of I (defined by ẋ = u = 0) are

E1 = {Leq = 0, leq = 0,
π

2
, π, Geq �= 0}, E2 = {Geq = Leq = 0, leq �= 0}. (36)

We observe that for an arbitrary u, the state space representation I(x, u) is regular for G �= L. Although
this singularity seemingly excludes the equilibrium E1 from the reachable set, it may be avoided by
requiring that u be a smooth feedback controller. We shall expand upon this issue in the next section.

There are a number of insights gained by the SA state-space model presented above. Most impor-
tantly, the magnitude of the angular momentum, G, is a controlled state variable. Therefore, x ∈ E2

constitutes detumbling (three-axis Stabilization). This representation of detumbling via a single state
variable constitutes a reduction of the Eulerian model, requiring regulation of all three components of
the angular velocity.

5. STABILIZING CONTROLLERS

The SA formalism constitutes a convenient framework for developing rigid-body attitude controllers.
We shall show that many fundamental results of the rigid body attitude control theory stem naturally
from the SA formalism. To that, we shall adopt a somewhat more formal style.

5.1. Accessibility

The first step in synthesizing a controller for any dynamical system is to determine whether the system
is controllable. In order to examine controllability properties of the nonlinear system discussed herein,
we shall adopt the notion of accessibility [32], a weaker form of controllability, defined as follows.

Definition 2. Let RT (x0) denote the set of states reachable from the initial state x0 in a finite
time tf using some admissible control u ∈ U . The system I is said to be accessible from x0,
if RT (x0) has a nonempty interior in X .

To use sufficiency conditions for accessibility, we shall also recall the following definitions:

Definition 3. ∆ is a weak accessibility distribution if it is spanned by the Lie algebra g generated
by f,w1, w2, w3.

Definition 4. ∆0 is a strong accessibility distribution if it is spanned by the Lie ideal g0 ∈ g

generated by w1, w2, w3.

The following well-known theorem provides a sufficient condition for accessibility [32]:

Theorem 4 (accessibility rank condition). System I is weakly (strongly) accessible from x0

if span∆(x0) = X (span∆0(x0) = X ).

We can now state the main result regarding accessibility of the rigid-body dynamics modeled by Andoyer
variables in the fully-actuated case.

Lemma 4. System I is accessible ∀x0 ∈ X .
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Proof. Interestingly, the SA model yields an Abelian Lie algebra, because the Lie brackets vanish, i.e.
[w1, w2] = [w1, w3] = [w2, w3] = 0. We shall therefore determine weak accessibility of I by calculating
the distribution

∆ = {w0, w1, w2, w3, [w0, w1], [w0, w2], [w0, w3]} (37)

where

[w0, w1] =

⎡⎢⎢⎢⎢⎢⎣
(a1 − a3)Lsl√

G2 − L2

(a3 − a2)Lcl

√
G2 − L2

G

(a1 − a2)cl

√
G2 − L2

⎤⎥⎥⎥⎥⎥⎦, [w0, w2] =

⎡⎢⎢⎢⎢⎢⎣
(a2 − a3)Lcl√

G2 − L2

(a1 − a3)Lsl

√
G2 − L2

G

(a1 − a2)sl

√
G2 − L2

⎤⎥⎥⎥⎥⎥⎦

[w0, w3] =

⎡⎢⎢⎢⎢⎣
(a1 − a3) + (a2 − a1)c2

l

(a2 − a1)(G2 − L2)s2l
2G

0

⎤⎥⎥⎥⎥⎦, ai = 1/Ii, i = 1, 2, 3, (38)

and showing that1)

span∆ = X . (39)

A calculation of rank(∆) will determine whether (39) is satisfied. To that end, we shall use the identity
rank∆ = rank∆∆T and examine det(∆∆T ). Performing the symbolic calculation entails

det(∆∆T ) =c6
l

(a1 − a2)3(G2 − L2)3(a1 + a2 − 2a3)
G2

− c4
l

(a1 − a2)2(G2 − L2)2f1(L,G, ai)
G2

+ c2
l

(a2 − a1)(G2 − L2)f2(L,G, ai)
G2

+
[
(a3 − a1)2

(
L4

G2
− L2 − 1

)
− 1

G2

]
×

[
(a2

3 + 2a1a2 − a2
1 − 2a3a2)

L2

G2
+

1
G2

+ (a1 − a2)2
]

(40)

where f1 and f2 are functions of the state variables satisfying f1, f2 �=0 ∀x ∈ X , and hence det(∆∆T ) �=0
∀x ∈ X , rendering the system globally accessible. �

A concept related (but, in the nonlinear case, not necessarily identical) to accessibility is that
of feedback Stabilizability [33]. The feedback Stabilization problem is usually stated as follows:
Given some set-point xd ∈ X , find a feedback control law u ∈ U that renders xd an asymptotically
stable equilibrium (i.e. Lyapunov stable and attractive) of I. If such a feedback exits, it is called an
internal asymptotic feedback Stabilizer of I. If K : X → U ∈ C∞, it is called a smooth internal
asymptotic feedback Stabilizer. We also distinguish between local and global feedback Stabi-
lizers.

To design feedback control laws for the attitude dynamics under the SA setup, we shall utilize
a Lyapunov-based approach. We will use the fact that the open-loop system is Hamiltonian to find
a natural Lyapunov function for the closed-loop system, rendering it globally asymptotically stable.

1)Higher order distributions yield equivalent results.
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5.2. Hamiltonian Lyapunov Controller

In order to derive a global asymptotic feedback Stabilizer, i.e. ∀x ∈ X , we shall use the fact that
the Hamiltonian is a natural Lyapunov function for the closed-loop system, I(x, u), as it comprises the
rotational kinetic energy only, which is always non-negative (cf. Eq. (17)). This remarkable feature
of the rigid-body dynamics permits a derivation of a simple smooth feedback controller as stated
by the following Lemma.

Lemma 5. Let K = diag(k1, k2, k3), ki > 0∀i. If the Lyapunov function V (x) = H, then the smooth
control law

u = −KW T (x)
∂H
∂x

=

⎡⎢⎢⎢⎢⎢⎣
−k1

I1

√
G2 − L2sl

−k2

I2

√
G2 − L2cl

−k3

I3
Ł

⎤⎥⎥⎥⎥⎥⎦ (41)

is a global smooth asymptotic feedback Stabilizer for I(x, u).

Proof. We note that V = H > 0∀x ∈ X\{E1 ∪ E2} and that H is radially unbounded. Re-writing the
equations of motion in Hamiltonian form gives2)

ẋ = J
∂H

∂x
+ W u, (42)

where J is given by3)

J =

⎡⎢⎢⎢⎣
0 0 1

0 0 0

−1 0 0

⎤⎥⎥⎥⎦ . (43)

Evaluating V̇ (x) along the trajectories of I and taking advantage of the fact that the Hamiltonian
is a constant of the motion yields

V̇ (x) =
[
∂H

∂x

]T

ẋ =
[
∂H

∂x

]T

J
∂H

∂x
+

[
∂H

∂x

]T

W u =
[
∂H

∂x

]T

W u. (44)

Taking

u = −K

[(
∂H

∂x

)T

W

]T

(45)

gives V̇ � 0. Asymptotic stability stems from LaSalle’s invariance principle (V̇ = 0 if and only if x ∈
E1 ∪ E2), and global asymptotic stability emanates from the radial unboundedness of V . �

Remark 5. We observe that the controller (41) is in fact a damping feedback with the Hamiltonian
serving as a control Lyapunov function for the closed loop system. This is a unique feature of the
Hamiltonian representation of the attitude dynamics.

Remark 6. Equivalently, we could have derived a non-smooth global asymptotic Stabilizer by taking

u = −Ksign
[
W T (x)

∂H
∂x

]
. (46)

However, we shall not dwell upon non-smooth Stabilization in this work.

2)We model gradients as column vectors for consistency.
3)Note that we are considering only part of the original SA state vector here. If the full state is considered, J becomes the

regular orthoskew symplectic matrix
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Remark 7. Stabilization about non-zero set-pint, xd, can be equivalently derived by defining the shifted
state x̄ = x − xd.

The smooth feedback Stabilizer presented by Eq. (41) is equivalent to a linear state feedback
in Eulerian angular velocities, u = −Kω, which has been previously derived in a number of works
[20, 35]. The following propositions outline a few important features of the control law (41).

Proposition 4. System I with input u and output (∂H/∂x)T W is passive.

Proof. Let V = H be a candidate storage function. Differentiating V along the system trajectories yields
Eq. (44). Integrating from 0 to some tf yields∫ tf

0

[
∂H

∂x

]T

W udt = V (x(T )) − V (x(0)). (47)

Since H � 0∀x ∈ X we have ∫ tf

0

[
∂H

∂x

]T

W udt + V (x(0)) � 0, (48)

which completes the proof. This result is equivalent to Ref. [20], which used an Eulerian formalism to
show passivity.

An additional important property of the SA-based control system is its inverse optimality with
respect to a meaningful performance criterion. This a somewhat general property of control Lyapunov
function [36]; however, its manifestation in our context under the Hamiltonian formalism is strikingly
simple, showing again the usefulness of formulating the rigid-body dynamics in canonical variables. �

Proposition 5. The control law (41) is inverse optimal with respect to the performance criterion

J =
∫ ∞

0
(q(x) + uT u)dt. (49)

Proof. The Hamilton–Jacobi–Bellman (HJB) equation for the functional (49) and an optimal return
function V ∗ reads [30] (

∂V ∗

∂x

)T

f − 1
4

(
∂V ∗

∂x

)T

WW T ∂V ∗

∂x
+ q(x) = 0 (50)

with the optimal controller being [30]

u = −1
2
W T ∂V ∗

∂x
. (51)

Let V ∗ = H. This nullifies the first term on the left hand side of (50). In additions, assume without loss
of generality that K = −1/2I. Under these conditions,

V̇ ∗ = Ḣ = V̇ = −1
2
H. (52)

Hence, choosing q(x) = H/2 implies inverse optimality. �

5.3. Illustrative Example

An important maneuver often encountered in three-axis Stabilized satellites is detumbling, nullifying
the initial angular rates resulting from orbital injection. While detumbling using Eulerian angular
velocities (ω1 = ω2 = ω3 = 0) as state variables does not directly affect the geometry of the body plane
relative to the invariable plane, modeling detumbling via the SA setup (G = L = 0) permits to control l,
the angle between the body b̂1-axis and the LON ĵ, to some desired, not necessarily zero, set-point
(l = ld �= 0). This is an important feature of the SA setup.
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To illustrate the detumbling performance of the damping and Hamiltonian controllers, we shall
assume that the satellite follows a circular orbit, so the orbital angular velocity is given by

ω0 =
√

µ

R3
0

, (53)

where µ = 3.986 · 105 km2/s3 is the gravitational constant of the Earth, and R0 is the orbital ra-
dius. Let R0 = 7000 km, so that ω0 = 0.001078 rad/s. In addition, assume that I3 = 1000 kgm2, I2 =
400 kgm2, I3 = 200 kgm2. The initial conditions chosen were L0 = 0.8 kgm2/s, G0 = 1 kgm2/s, l0 =
50 deg. The closed-loop simulation results, exhibiting the performance of the Hamiltonian controller
are depicted by Figs. 1 and 2, showing the time history of the states l, G, L and the control torques,
respectively. The detumbling maneuver must be completed within a small time window (about 1 s), thus
requiring a considerable torque: about 23 Nm. In practice, the actuators will saturate, extending the
system settling time.

5.4. Control on the Orbit
The feedback controller given in Section 5.5.2 effectively controls the Andoyer variables (l, G,L), but

does not preserve the foliation since the angular momentum is no longer conserved. Alternatively, one
can consider control formulations on the orbit space OG itself. Indeed, consider the controlled dynamics
with the reduced Hamilitonian of (17):

ż = J
∂h

∂z
+ τ , z = (l, L) ∈ Xz = S1 × [−G,G], J =

⎡⎣ 0 1

−1 0

⎤⎦ (54)

or

l̇ = L

(
1
I3

− s2
l

I1
− c2

l

I2

)
+ τ1, (55a)

L̇ = (L2 − G2)slcl

(
1
I1

− 1
I2

)
+ τ2. (55b)

Fig. 1. Detumbling using Hamiltonian control.
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Fig. 2. Detumbling control components and total control torque of the Hamiltonian control.

From the proof of Proposition 3, we can deduce that the control torque u of the controlled Euler–Poinsot
equations (22), which is a vector tangent to OG, then has the form u = v × g, where

v =
(

cos l√
G2 − L2

τ2 , − sin l√
G2 − L2

τ2 , −τ1

)
. (56)

Returning to (54) which is a controlled Hamiltonian system in canonical form, we can similarly adopt
the Lyapunov approach of Section 5.5.2. Using h as the Lyapunov function, we thus have the following
result:

Lemma 6. Assuming I1 > I2 > I3, the smooth control law

τ = −K
∂h

∂z
, K > 0 (57)

globally asymptotically stabilizes spin about the major axis b1, in the sense that all solutions
starting in the compact set Xz converge to the equilibria

E3 = {(l, L) : |L| = 0, l = ±π/2}.

Proof. With the Lyapunov function V = h and the controller (57), V̇ = (∂h/∂z)T K(∂h/∂z).
Since K > 0, V̇ = 0 if and only if ∂h/∂z = 0. It thus follows that the level set {V̇ = 0} = E3 ∪ {(0, 0)}.
Further analysis of the linearized equations will show that the point (0, 0) is an unstable equilibrium,
whereas E3 is a pair of stable equilibria. By LaSalle’s invariance principle, all solution starting in Xz enter
E3. Finally, using (12) one verifies that E3 corresponds to the body angular momentum g = (±G, 0, 0).
This shows that spin about b1 is globally asymptotically stabilized. �

Remark 8. The controller (57) conserves the magnitude G of the angular momentum by keeping
the trajectories on the orbit OG. However, a quick calculation will show that spatial angular momentum,
i.e. the vector G is not conserved. Hence, strictly speaking it is not a structure-preserving control and,
as in the case of the controller (41), the reconstruction of the full dynamics will not be as straight-forward
as in the case of the free rigid body.
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6. RIGID BODY WITH SINGLE SYMMETRIC ROTOR
We now return to the issue of structure-preserving control, and dwell upon Stabilization

by the method of controlled Lagranians — see e.g. [6] and [5].
Consider now a system consisting of a main body (the base) equipped with a single, symmetric rotor

aligned with the third principle axis. Let J1 = J2 and J3 be the moments of inertia of the symmetric rotor,
and denote by γ the angular position of the rotor relative to the body. The Lagrangian of the free system,
i.e., in the absence of control, is given by [4]. See also the work [5] and related work on the method
of controlled Lagrangians cited in e.g. [6].

Lf (ω, γ̇) =
1
2
ω · (I + J)ω +

1
2
J3(ω3 + γ̇)2, (58)

where I = diag(I1, I2, I3) and J = diag(J1, J2, 0). The corresponding Legendre’s transform is given by

FLf :

⎡⎢⎢⎢⎢⎢⎢⎣
ω1

ω2

ω3

γ̇

⎤⎥⎥⎥⎥⎥⎥⎦ �−→

⎡⎢⎢⎢⎢⎢⎢⎣
g1

g2

g3

Γ

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
(J1 + I1)ω1

(J2 + I2)ω2

I3ω3 + J3(ω3 + γ̇)

J3(ω3 + γ̇)

⎤⎥⎥⎥⎥⎥⎥⎦, (59)

which yields the free Hamiltonian

Hf (g,Γ) =
1
2

(
g2
1

λ1
+

g2
2

λ2
+

(g3 − Γ)2

I3

)
+

Γ2

2J3
, (60)

where λi = Ii + Ji, i = 1, 2.
The configuration space of the present problem is the Lie Group SO(3) × S1, with Lie algebra

so(3)∗ × R. The group action in question is L(R,γ)(S, ϕ) = (RS, γ + ϕ). As in the case of the free rigid
body (recall Section 2), the rigid body with rotor admits a body representation via the mapping λ̄ :
T ∗SO(3)×T ∗S1→(SO(3)×so(3)∗)×(S1×R) : (αR, γ,Γ) �→ (R, T ∗

e LR · αR, γ,Γ). As usual, so(3)∗

is identified with R3.
Let H ∈ F(so(3)∗ × R)), in other words, a left-invariant smooth function on the cotangent bundle.

It can be shown, by a result analogous to Lemma 1 for the Lie group G = SO(3) × S1, that the
associated Hamiltonian vector field is given in body coordinates by

XH(R,g, γ,Γ) =
(
R · D̂1H , g × D1H , ∂H/∂Γ , −∂H/∂γ

)
, (61)

where D1 denotes the derivative with respect to the first argument. In particular, the equations of motion
for the free system are obtained with H = Hf . In addition, let the system be feedback-controlled by
applying a torque u(R,g, γ,Γ) to the rotor, which then yields the following controlled equations of
motion.

Ṙ = R · D̂1Hf , (62a)
ġ = g ×D1Hf , (62b)

γ̇ = ∂Hf/∂Γ, (62c)

Γ̇ = u(R,g, γ,Γ). (62d)

6.1. Structure Preserving Control
Definition 5. We say that the control u(R,g, γ,Γ) preserves the canonical structure on T ∗SO(3)
or preserves the rigid body structure if there exists a smooth function Hc ∈ F(so(3)∗) such that
the closed-loop equations of the base motion have the form

Ṙ = R · ∇̂gHc, (63a)

ġ = g ×∇gHc. (63b)
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That is, a control that preserves the rigid body structure yields closed-loop Euler’s equation that is
Hamiltonian with respect to the usual Lie–Poisson structure on so(3)∗. Moreover, one can easily verify
the following lemma which gives a sufficient condition for such a control.

Lemma 7. Given the controlled equations of motion (62), a sufficient condition for the control u
to preserve the rigid body structure is that, along the flow of the closed-loop system,
i. Γ is a function of g, i.e., Γ = Γ(g), and

ii. ∇gHc(g) = D1Hf (g,Γ(g)). (64)

Bloch et al. [4] gave a Hamiltonian control for which the closed-loop reduced equations are Lie–
Poisson on so(3)∗. In fact, they satisfy (64). We shall prove in the following a slightly more general
result.

Proposition 6. Let ϕ : R → R be a C1 function. Then, the feedback control

u(g) = ϕ′(g3)
(

1
λ1

− 1
λ2

)
g1g2 (65a)

preserves the rigid body structure with the closed-loop Hamiltonian

Hc(g) =
1
2

(
g2
1

λ1
+

g2
2

λ2
+

g2
3

I3

)
− 1

I3

∫
(ϕ(g3) + p) dg3, (65b)

where p is a constant.

Proof. Expanding (62b) and (62c), one gets the following:

ṁ1 =
(

1
I3

− 1
λ2

)
g2g3 −

1
I3

Γg2, (66a)

ṁ2 =
(

1
λ1

− 1
I3

)
g1g3 +

1
I3

Γg1, (66b)

ṁ3 =
(

1
λ2

− 1
λ1

)
g1g2, (66c)

Γ̇ = u. (66d)

It can thus be seen that, given (65a), the quantity p = Γ − ϕ(g3) is conserved and, hence, i. in Lemma 7
is satisfied. Next, by (65b),

∇gHc(g) =
(

g1

λ1
,
g2

λ2
,
g3

I3
− 1

I3
(ϕ(g3) + p)

)
=

(
g1

λ1
,
g2

λ2
,

1
I3

(g3 − Γ(g3))
)

= D1Hf (g,Γ(g)),

i.e., (64), which completes the proof.

Remark 9. Setting ϕ(v) = kv, where k is a constant, recovers the result in Theorem 5.1 of [4].

6.2. Andoyer Variables for the Control System
By Proposition 6, the base motion of the system subject to the control (65a) is that of a Hamilto-

nian system on T ∗SO(3) with the left-invariant Hamiltonian Hc. The expression of the Hamiltonian
(and the associated Lagrangian) depend ultimately on the definition of the function ϕ. Nevertheless,
we are able to proceed implicitly as follows.

Theorem 5. Suppose that ϕ′(v) �= 1 for all v ∈ R. Then, the Hamiltonian Hc given by (65b)
is hyperregular, and the closed-loop main body motion of the system (62) with the control (65a)
is reduced by the generalized Serret–Andoyer transformation to

l̇ = − L

(
sin2 l

λ1
+

cos2 l

λ2

)
+

1
I3

(L − ϕ(L) − p) , (67a)

L̇ =(G2 − L2)
(

1
λ2

− 1
λ1

)
sin l cos l (67b)
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with the reduced Hamiltonian

hG(l, L) =
1
2
(G2 − L2)

(
sin2 l

λ1
+

cos2 l

λ2

)
+

L2

2I3
− 1

I3

∫
(ϕ(L) + p) dL. (68)

Moreover, in the spatial frame defined in Proposition 2, the closed-loop motion of the main body
is described by the 3-1-3 Euler angles (φ, θ, l), with cosθ = L/G and φ =

∫
∂Hc/∂Φ|MG

dt.

Proof. We need only to prove that Hc is hyperregular, providing which the rest of Theorem 5 is a direct
application of Theorem 3. By the inverse Legendre transform for the closed loop, i.e., ω = ∇gHc, one
gets

ω1 = g1/λ1, (69a)

ω2 = g2/λ2, (69b)

ω3 = (g3 − ϕ(g3) − p)/I3. (69c)

Since ϕ′(v) �= 1 for all v ∈ R, the above is invertible with differentiable inverse by the implicit function
theorem. Hence, the inverse Legendre transform is a diffeomorphism, i.e., Hc is hyperregular. �

Example 2. Let ϕ(v) = kv, k �= 1. Then,

hG(l, L) =
1
2
(G2 − L2)

(
sin2 l

λ1
+

cos2 l

λ2

)
+

((1 − k)L − p)2

2I3(1 − k)
. (70)

In particular, it can be verified that the case where the rotor is locked corresponds to p = 0 and k =
J3/(I3 + J3). Substituting the latter expression of k into (70) recovers the reduced Hamiltonian
for the free rigid body with moments of inertia Ii + Ji, i = 1, . . . , 3.

6.3. Spin Stabilization about the Intermediate Axis

Suppose in the following that λ1 > λ2 > I3 + J3, so that the second body axis is the intermediate
axis of the locked system. An immediate consequence of Theorem 5 is a simpler stability proof for
relative equilibria. First, note that rotation about the intermediate axis, i.e., g = (0, G, 0), corresponds
to an equilibrium point at (l, L) in the reduced phase space. In [4], the energy-Casimir method was
used to prove stability of the relative equilibria g = (0, G, 0) for the closed-loop Lie–Poisson system.
However, for Hamiltonian systems in canonical symplectic form, which is the case of the reduced
system (67), the classical Lagrange–dirichlet stability criterion suffices. In effect, the point (l, L) =
(0, 0) is a stable equilibrium in the sense of Lyapunov if the partial derivatives of hG vanish at (0, 0),
and if the 2× 2 matrix δ2hG of second partial derivatives evaluated at (0, 0) is either positive- or negative-
definite. See [7] for a statement and proof of the Lagrange–dirichlet criterion. The following generalizes
Theorem 5.2 in [4].

Theorem 6. Consider the case ϕ(0) + p = 0 and ϕ′(0) > 1− I3/λ2. Then, the point (l, L) = (0, 0) of
the reduced system (67) is stable in the sense of Lyapunov and, hence, the control (65a) Stabilizes
rotation about the intermediate axis of the body-rotor system.

Proof. From (68), ∂hG/∂l = 0, and ∂hG/∂L = −(ϕ(0) + p)/I3 which equals zero if ϕ(0) + p = 0.
The point (0, 0) is thus an equilibrium point. Next,

∂2hG

∂l2
= (G2 − L2)

(
1
λ2

− 1
λ1

)
(sin2 l − cos2 l),

∂2hG

∂l∂L
= 2L

(
1
λ2

− 1
λ1

)
sin l cos l,

∂2hG

∂L2
=

(
1
λ2

− 1
λ1

)
sin2 l +

(
1
I3

− 1
λ2

)
− 1

I3
ϕ′(L).
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Hence,

δ2hG(0, 0) =

⎡⎣−G2
(

1
λ2

− 1
λ1

)
0

0
(

1
I3

− 1
λ2

)
− 1

I3
ϕ′(0)

⎤⎦ ,

which is (negative) definite for ϕ′(0) > 1 − I3/λ2. The Lagrange–dirichlet criterion is thus satisfied. �

7. RIGID BODY WITH THREE SYMMETRIC ROTORS

The Serret–Andoyer analysis can also be applied to a system with three rotors. Indeed, consider now
the rigid body equipped with three symmetric rotors, each aligned with a principal axis of inertia of the
rotor. The Lie group in question is SO(3)× S3, with (SO(3)× so(3)∗)× (S3 ×R3) as cotangent bundle
in body representation. The Lagrangian of the free (uncontrolled) system is [4]

Lf (ω, γ̇) =
1
2
ω ·Λω +

3∑
i=1

1
2
Ji(ωi + γ̇i) (71)

for ω ∈ so(3) � R3, γ̇ ∈ R3, where Λ = diag(λ1, λ2, λ3) is the locked inertia tensor which is diagonal
by the assumption that the rotors are symmetric and aligned with the principal axes. Ji, i = 1, . . . , 3
are the rotors’ moments of inertia along their respective axes of rotation. By the Legendre transform,
the conjugate momenta are

FLf :

⎡⎣ωi

γ̇i

⎤⎦ �−→

⎡⎣mi

Γi

⎤⎦ =

⎡⎣λiωi + Ji(ωi + γ̇i)

Ji(ωi + γ̇i)

⎤⎦, i ∈ {1, . . . , 3}, (72)

and the free Hamiltonian is left-invariant and is given by

Hf (g,Γ) =
1
2

(
(g1 − Γ1)2

λ1
+

(g2 − Γ2)2

λ2
+

(g3 − Γ3)2

λ3

)
+

1
2

(
Γ2

1

J1
+

Γ2
2

J2
+

Γ2
3

J3

)
. (73)

Introducing control inputs in the form of torques on the rotors, the generic controlled equations are

Ṙ = R · D̂1Hf , (74a)

ġ = g × D1Hf , (74b)

γ̇ = D2Hf , (74c)

Γ̇ = u. (74d)

In the following, we consider feedback control of the form u : (SO(3) × so(3)∗) × (S3 × R3) → R3.
As in the case of the system with a single rotor, we are interested in controls that preserve the rigid

body structure as defined in Definition 5. We recall below a large class of Hamiltonian controls given
in [4] that satisfy the conditions of a straightforward extension of Lemma 7 for the present system.

Proposition 7. Let ϕ : R3 → R3 be a smooth map such that the 3 × 3 matrix Dϕ(g) is symmetric
for all g ∈ R3. Then the feedback controls

u = Dϕ(g) · ġ (75)

for the system (74) preserve the rigid body structure in the sense of Lemma 7.

The proof of the above is based on the properties that the given control conserves the quantity Γ −
ϕ(g), and that the symmetry condition guarantees that there exists an Hc(g) such that ∇gHc =
D1Hf (g,Γ(g)). See [4, Theorem 4.2] for the details.

For the sub-class of (75) where ϕ(g) = (ϕ1(g1), ϕ2(g2), ϕ3(g3)), so that the symmetry condition
in Proposition 7 is satisfied, the Hamiltonian is quite easily obtained. We shall use this to demonstrate
the application of the generalized Serret–Andoyer transformation for the rigid body with three rotors,
bearing in mind that even in the general case, the same can be done if the expression of ϕ is given.
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Corollary 2. Let ϕi : R → R be C1 functions, i = 1, . . . , 3. Then, the feedback control u = (u1, u2,
u3)(g) for the system (74), defined by

ui = ϕ′
i(gi)ġi, i ∈ {1, 2, 3} (76)

preserves the rigid body structure in the sense of Lemma 7, with the closed-loop Hamiltonian

Hc(g) =
3∑

i=1

1
λi

∫
(gi − ϕi(gi) − Gi) dgi, (77)

where G1, G2 and G3 are constants. Moreover, if ϕ′
i(v) �= 1, i = 1, . . . , 3, then Hc is hyperregular.

Proof. Observe by expanding (74) that the control (76) conserves the quantities Gi = Γi − ϕ(gi),
i = 1, . . . , 3. Then it can easily be verified by taking partial derivatives of (77) that (64) is satisfied.
The inverse Legendre transform of the controlled Hamiltonian, ω = ∇gHc, relates the body controlled
momentum g and the body angular velocity ω by

ωi = (gi − ϕi(gi) − Gi)/λi

for i = 1, . . . , 3. Since ϕ′
i(v) �= 1 for all v ∈ R, the above is invertible with differentiable inverse by the im-

plicit function theorem. Hence, Hc is hyperregular.

The following are then immediate applications of Theorem 3.

Theorem 7. Suppose ϕ′
i(v) �= 1, i = 1, . . . , 3, for all v ∈ R. Let ϕ̃1 = ϕ1 ◦ U1 and ϕ̃2 = ϕ2 ◦ U2.

Then the closed-loop main body motion of the system (74) with the control (76) is reduced by
the generalized Serret–Andoyer transformation to l̇ = ∂hG/∂L, L̇ = −∂hG/∂l with the reduced
Hamiltonian

hG(l, L) =
1
2
(G2 − L2)

(
sin2 l

λ1
+

cos2 l

λ2

)
+

L2

2λ3
− 1

λ3

∫
(ϕ3(L) + G3)dL

−
√

G2 − L2

∫ [
(ϕ̃1(l, L) + G1)

cos l

λ1
− (ϕ̃2(l, L) + G2)

sin l

λ2

]
dl. (78)

Moreover, in the spatial frame defined in Proposition 2, the closed-loop motion of the main body
is described by the 3-1-3 Euler angles (φ, θ, l), with cos θ = L/G and φ =

∫
∂Hc/∂Φ|MG

dt.

For the particular case where ϕ1 = ϕ2 = 0, that is, control is applied to rotor 3 only, the momenta Γ1

and Γ2 are integrals of motion. We thus have the following.

Corollary 3. Under the conditions of Theorem 7, and choosing ϕ1 = ϕ2 = 0, the reduced Hamil-
tonian is then given by

hG(l, L) =
1
2
(G2 − L2)

(
sin2 l

λ1
+

cos2 l

λ2

)
−

(
Γ1 sin l

λ1
+

Γ2 cos l

λ2

)√
G2 − L2

+
L2

2λ3
− 1

λ3

∫
(ϕ3(L) + G3)dL, (79)

where Γ1, Γ2 and G3 are constants.

8. CONCLUSIONS

In this paper, we have completed reviewing the Serret–Andoyer (SA) formalism for modeling and
control of rigid-body dynamics from the dynamical systems perspective. We have dwelt upon modeling
control torques, geometry, and Stabilizing control. All these issues were embedded into the SA setup
and new insights were contributed; in particular, we have shown that the SA formalism is very useful
for global Stabilization of the rigid-body dynamics.

The SA formalism permits a straightforward derivation of asymptotically Stabilizing controllers
and naturally supports practical problems such as satellite detumbling. However, the main feature of
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the Andoyer variables is the reduction of the underlying dynamics. The canonical approach facilitates
the design of Stabilizing controllers, with the Hamiltonian serving as a natural Lyapunov function
for the problem.

We have also shown that the symmetry-reduced phase space of the Andoyer variables naturally sup-
ports the synthesis of structure-preserving control through the mechanism of controlled Lagrangians.
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