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Abstract—This paper reviews the Serret–Andoyer (SA) canonical formalism in rigid-body dynam-
ics, and presents some new results. As is well known, the problem of unsupported and unperturbed
rigid rotator can be reduced. The availability of this reduction is offered by the underlying symmetry,
that stems from conservation of the angular momentum and rotational kinetic energy. When
a perturbation is turned on, these quantities are no longer preserved. Nonetheless, the language
of reduced description remains extremely instrumental even in the perturbed case. We describe the
canonical reduction performed by the Serret–Andoyer (SA) method, and discuss its applications
to attitude dynamics and to the theory of planetary rotation. Specifically, we consider the case of
angular-velocity-dependent torques, and discuss the variation-of-parameters-inherent antinomy
between canonicity and osculation. Finally, we address the transformation of the Andoyer variables
into action-angle ones, using the method of Sadov.
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1. INTRODUCTION

One of the classical problems of mechanics is that of a free motion of a rigid body, usually referred to
as the Euler–Poinsot problem. The formulation and solution of this problem are usually performed
in two steps. First, the dynamics of the rotation are represented by differential equations for the
components of the body angular velocity. As is well known, these equations admit a closed-form solution
in terms of Jacobi’s elliptic functions [1]. Second, the kinematic equations are utilized to transform
the body angular velocity into a spatial inertial frame. While this classical formulation is widespread
among engineers, astronomers exhibit a marked preference for formulation that takes advantage of the
internal symmetries of the Euler–Poinsot setting [2]. The existence of internal symmetries indicates
that the unperturbed Euler–Poinsot problem can be reduced to a smaller number of variables, whereafter
the disturbed setting can be treated as a perturbation expressed through those new variables (the
disturbance may be called into being by various reasons — physical torques; inertial torques emerging
in non-inertial frames of reference; non-rigidity of the rotator).

There exist reasons for performing this reduction in the Hamiltonian form and making the resulting
reduced variables canonical. The first reason is that a perturbed Hamiltonian system can be analytically

*E-mail: pgurfil@technion.ac.il
**E-mail: elipe@posta.unizar.es

***E-mail: bjt@aa.usno.navy.mil
****E-mail: me@usno.navy.mil

389



390 GURFIL et al.

solved in any order over the parameter entering the perturbation.1) A celebrated example of a successful
application of the Hori–Deprit method to a geophysical problem is given by the theory of rigid Earth
rotation offered by Kinoshita [8] and further developed by joint efforts of Escapa et al. [9, 10], Getino and
Ferrándiz [11], Kinoshita and Souchay [12]. Other applications to planetary and lunar rotation may be
found in [17, 18], and [19].

The second advantage of the canonical description originates from the convenience of numerical
implementation: symplectic schemes are well-known for their good stability and precision. (See, for
example, Yoshida [13].) This is why the Hamiltonian methods are especially beneficial at long time scales,
a feature important in astronomy. (Laskar and Robutel [14]; Touma and Wisdom [15, 16])

Several slightly different sets of canonical variables are used for modeling rigid-body dynamics and
kinematics. Most popular is the set suggested in 1923 by Andoyer [20]. This set is not completely
reduced: while three of its elements are constants (in the unperturbed free-spin case), three others
are permitted to evolve. Andoyer arrived at his variables through a pretty sophisticated procedure.
Canonicity of Andoyer’s change of variables is not immediately apparent (though can be proven by a
direct construction of the corresponding generating function). Much later, the study by Andoyer was
amended by Deprit [21] who demonstrated that the canonicity of Andoyer’s transformation may be
proven by using differential forms and without resorting to explicitly finding a generating function.

A full reduction of the Euler–Poinsot problem, one that has the Andoyer variables as its starting
point, was recently offered by Deprit and Elipe [2]. It would be interesting to notice that, historically,
the pioneer canonical treatment of the problem, too, was formulated in a completely reduced way, i.e.,
in terms of canonically-conjugate constants of motion. These constants, presently known as Serret
elements, are named after the 19th century French mathematician Joseph Alfred Serret who discovered
these variables by solving the Jacobi equation written in terms of the Eulerian coordinates [22]. Serret’s
treatment was later simplified by Radeau [23] and Tisserand [24]. However, for the first time the Serret
elements appeared in an earlier publication by Richelot [25].

Probably the most distinguishing feature of the canonical approach is that it permits reduction
of the torque-free rotational dynamics to one-and-a-half degrees of freedom. In essence, such a for-
mulation reduces the dynamics by capturing the underlying symmetry of the free rigid body problem —

the symmetry taking its origin from the conservation of energy and angular momentum. As a result,
the entire dynamics can be expressed by differential equations for two of the Eulerian angles and one of
the conjugate momenta — equations that are readily integrable by quadrature. The corresponding one-
and-a-half-degrees-of-freedom Hamiltonian yields a phase portrait, that is similar to that of the simple
pendulum and contains a separatrix confining the librational motions [21].

In the canonical formulation of attitude-mechanics problems, incorporation of perturbation and/or
control torques into the picture is a subtle operation. In particular, when the perturbing torque
is angular-velocity-dependent, the canonicity contradicts osculation condition. In other words, the
expression for the angular velocity through the canonical Serret or Andoyer variables acquires a
correction called the convective term.

To better understand the latter observation, we shall use an orbital-dynamics analogy. This shall be
convenient, because both orbital and rotational dynamics employ the method of variation-of-parameters
to model perturbing inputs. In both cases, the coordinates (Cartesian, in the orbital case, or Eulerian
in the rotational case) are expressed, in a non-perturbed setting, via the time and six adjustable constants
called elements (orbital elements or rotational elements, accordingly). If, under disturbance, we use these
expressions as an ansatz and endow the “constants” with time dependence, then the perturbed velocity
(orbital or angular) will consist of a partial derivative with respect to the time, plus the convective term,
one that includes the time derivatives of the variable “constants”. Out of sheer convenience, the so-
called Lagrange constraint is often imposed. This constraint nullifies the convective term and, thereby,
guarantees that the functional dependence of the velocity upon the time and “constants” stays, under
perturbations, the same as it used to be in the undisturbed setting. The variable “constants” obeying this
condition are called osculating elements. Otherwise, they are simply called orbital elements (in orbital
mechanics) or rotational elements (in attitude mechanics).

1) While in the past such analytical solutions were built by means of the von Zeipel method, more efficient is the procedure
independently offered by Hori [3] and Deprit [4]. An explanation of the method can be found in [5]. A concise introduction
into the subject can be found in Chapter 8 of the second volume of [6] and in Chapter 5 of [7].
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When the dynamical equations, written in terms of the “constants”, are demanded to be canonical,
these “constants” are the Delaunay elements, in the orbital case, or the initial values of the Andoyer
elements in the spin case. These two sets of elements share a feature not readily apparent: in certain
cases, the standard equations render these elements non-osculating.

In attitude dynamics, the Andoyer variables come out non-osculating when the perturbation depends
upon the angular velocity. For example, since a transition to a non-inertial frame is an angular-
velocity-dependent perturbation, then amendment of the dynamical equations by only adding extra terms
to the Hamiltonian makes these equations render non-osculating Andoyer variables. To make them
osculating, extra terms must be added in the dynamical equations (and then these equations will no
longer be symplectic). Calculations in terms of non-osculating variables are mathematically valid, but
their physical interpretation is not always easy.

The purpose of this paper will be threefold. We shall first aim to provide the reader with a coherent
review of the Serret-Andoyer (SA) formalism; second, we shall dwell on the canonical perturbation
theory in the SA context; and third, we shall consider introduction and physical interpretation of the
Andoyer variables in precessing reference frames, with applications to planetary rotation. A subsequent
publication by Bloch, Gurfil, and Lum (2007) [26] will deal with the Andoyer-variables-geometry based
on the theory of Hamiltonian systems on Lie groups, and will fill the existing gap in the control literature
by using the SA modeling of rigid-body dynamics in order to derive nonlinear asymptotically stabilising
controllers.

2. THE EULERIAN VARIABLES

Through this entire section the compact notations sx = sin(x), cx = cos(x) will be used. The angular-
velocity and angular-momentum vectors, as seen in the principal axes of the body, will be denoted by
low-case letters: ω and g. The same two vectors in an inertial coordinate system will be denoted with
capital letters: Ω and G.

2.1. Basic Formulae

Consider a rotation of a rigid body about its center of mass, O. The body frame, B, is a Cartesian
dextral frame that is centered at the point O and is defined by the unit vectors b̂1, b̂2, constituting the
fundamental plane, and by b̂3 = b̂1 × b̂2. The attitude ofB will be studied relative to an inertial Cartesian
dextral frame, I, defined by the unit vectors ŝ1, ŝ2 lying on the fundamental plane, and by ŝ3 = ŝ1 × ŝ2.
These frames are depicted in Fig. 1.

A transformation from I toB may be implemented by three consecutive rotations making a 3− 1 − 3
sequence. Let the line of nodes (LON) OQ2 be the intersection of the body fundamental plane and the
inertial fundamental plane, as shown in Fig. 1. Let l̂ be a unit vector pointing along OQ2. The rotation
sequence can now be defined as follows:2)

• R(φ, ŝ3), a rotation about ŝ3 by 0 6 φ 6 2π, mapping ŝ1 onto l̂ ;

• R(θ, l̂), a rotation about l̂ by 0 6 θ 6 π, mapping ŝ3 onto b̂3;

• R(ψ, b̂3), a rotation about b̂3 by 0 6 ψ 6 2π, mapping l̂ onto b̂1.

The composite rotation, R ∈ SO(3), transforming any inertial vector into the body frame, is given by

R(φ, θ, ψ) = R(ψ, b̂3)R(θ, l̂)R(φ, ŝ3). (1)

2) Be mindful that in the physics and engineering literature the Euler angles are traditionally denoted with (φ, θ, ψ). In the
literature on the Earth rotation, the inverse convention, (ψ, θ, φ), is in use [8–12].
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Fig. 1. An inertial coordinate system, ŝ1, ŝ2, ŝ3, a body-fixed frame, b̂1, b̂2, b̂3, an angular momentum-based frame and
intersections of their fundamental planes, denoted by î, l̂, ĵ.

Evaluation of this product gives

R(φ, θ, ψ) =




cψcφ − sψcθsφ cψsφ + sψcθcφ sψsθ

−sψcφ − cψcθsφ −sψsφ + cψcθcφ cψsθ

sθsφ −sθcφ cθ


. (2)

To write the kinematic equations, we recall that the body angular-velocity vector, ω = [ω1, ω2, ω3]
T

satisfies [28]

ω̂ = −ṘRT (3)

where the hat map (̂·) : R
3 → so(3) is the usual Lie algebra isomorphism and

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


. (4)

Insertion of Eq. (2) into (3) yields the well-known expressions for the components of the vector
of the body angular velocity ω:

ω1 = φ̇sθsψ + θ̇cψ, (5)

ω2 = φ̇cψsθ − θ̇sψ, (6)

ω3 = ψ̇ + φ̇cθ, (7)
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while the action of the rotation matrix (2) upon the body angular velocity gives the inertial-frame-related
(sometimes called spatial) angular velocity:

Ω = RTω, (8)

with the following components:

Ω1 = θ̇ cφ + ψ̇ sθ sφ, (9)

Ω2 = θ̇ sφ + ψ̇ sθ cφ, (10)

Ω3 = φ̇+ ψ̇ cθ. (11)

In the body frame, attitude dynamics are usually formulated by means of the Euler–Poinsot equations.
In a free-spin case, these equations look as

Iω̇ + ω × Iω = 0, (12)

I being the inertia tensor. To arrive to these equations, one has to start out with the Lagrangian,

L(φ, θ, ψ, φ̇, θ̇, ψ̇) =
1

2
ω · Iω, (13)

to substitute therein expressions (5)–(7); to write down the appropriate Euler–Lagrange variational
equations for the Euler angles; and then to use the expressions (5)–(7) again, in order to rewrite these
Euler–Lagrange equations in terms of ω. This will result in (12). The same sequence of operations
carried out on a perturbed Lagrangian L + ∆L will produce the forced Euler–Poinsot equations:

Iω̇ + ω × Iω = u, (14)

u ∈ R
3 being the body-frame-related torque that can be expressed through derivatives of ∆L .

The Euler–Poinsot description of the motion is essentially Lagrangian. Alternatively, the equations
of attitude dynamics can be cast into a Hamiltonian shape.

A most trivial but important observation can be made simply from looking at (14). If one rewrites (14)
not in terms of velocities but in terms of the Euler angles, three differential equations of the second order
will emerge. Their solution will depend on the time and six adjustable constants. Hence, no matter which
description one employs — Lagrangian or Hamiltonian — the number of emerging integration constants
will always be six.

2.2. Hamiltonian Description. The Free-Spin Case

From here forth we shall assume that the body axes coincide with the principal axes of inertia, so we
can write

I = diag(I1, I2, I3). (15)

Having substituted expressions (5)–(7) and (15) into (13), one can easily write the generalized momenta
pn = Φ,Θ,Ψ conjugate to the configuration variables qn = φ, θ, ψ [2, 32]:

Φ =
∂L
∂φ̇

= I1sθsψ(φ̇sψsθ + θ̇cψ) + I2sθcψ(φ̇cψsθ − θ̇sψ) + I3cθ(φ̇cθ + ψ̇), (16)

Θ =
∂L
∂θ̇

= I1cψ(φ̇sθsψ + θ̇cψ) − I2sψ(φ̇cφsθ − θ̇sψ), (17)

Ψ =
∂L
∂ψ̇

= I3(φ̇cθ + ψ̇). (18)
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The inverse relations will assume the form of

φ̇ = −I1cψ(Ψcθcψ − Φcψ + Θsθsψ) + I2sψ(Ψcθsψ − Φsψ − Θcψsθ)

I1I2s2
θ

, (19)

θ̇ =
I2cψ(Φsψ + Θsθcψ − Ψsψcθ) + I1sψ(Ψcψcθ − Φcψ + Θsθsψ)

I1I2sθ
, (20)

ψ̇ = −I1I3cψ(Φcθcψ − Ψcψc2
θ − Θsψsθcθ) + I3I2sψ(Φcθsψ − Ψc2

θsψ + Θcψsθcθ)

I1I2I3s2
θ

+
Ψ

I3
. (21)

Substitution of (19)–(21) into the Legendre-transformation formula

H = Φ φ̇+ Θ θ̇ + Ψ ψ̇ −L (22)

will then readily give us the free-spin Hamiltonian:

H(φ, θ, ψ,Φ,Θ,Ψ) =
1

2

(
s2
ψ

I1
+

c2
ψ

I2

)(
Φ − Ψcθ

sθ

)2

+
Ψ2

2I3
+

1

2

(
c2
ψ

I1
+

s2
ψ

I2

)
Θ2

+

(
1

I1
− 1

I2

)(
Φ − Ψ cθ

sθ

)
Θ sψ cψ. (23)

In the above Hamiltonian the coordinate φ (the angle of rotation about the inertial axis s3) is cyclic
(ignorable), so that the appropriate momentum Φ is an integral of motion. This symmetry implies
a possibility of reduction of the free-spin problem to only two degrees of freedom. Based on this
observation, Serret [22] raised the following question: Is there a canonical transformation capable of
reducing the number of degrees of freedom even further? We shall discuss this issue in the following
section. To get this program accomplished, we shall need to know the relationship between the body
rotational angular momentum and the conjugate momenta. Let g =

∑
gibi and G =

∑
Gisi be the

angular momentum in the body frame and in inertial frame, accordingly. By plugging (5)–(7) into

g = Iω (24)

and by subsequent insertion of (19)–(21) therein, one easily arrives at

g1 =
Φsψ + Θsθcψ − Ψsψcθ

sθ
, (25)

g2 =
Φcψ − Θsψsθ − Ψcψcθ

sθ
, (26)

g3 = Ψ. (27)

Notice the symplectic structure defined by the components of the angular momentum. It is a matter
of computing partial derivatives to check that the Poisson brackets are

(g1, g2) = −g3, (g2, g3) = −g1, (g3, g1) = −g2 (28)

By the same token, insertion of expressions (9)–(11) into

G = IΩ, (29)

with the subsequent use of (19)–(21), entails:

G1 =
Ψsφ + Θsθcφ − Φsφcθ

sθ
, (30)

G2 =
Φcθcφ − Ψcφ + Θsφsθ

sθ
, (31)

G3 = Φ, (32)

yielding the symplectic structure

(G1, G2) = G3, (G2, G3) = G1, (G3, G1) = G2. (33)
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from the symplectic structure (28) and the expression (23) of the Hamiltonian, there results

ġ1 = (g1,H) = −
(

1

I2
− 1

I3

)
g2g3, (34)

ġ2 = (g2,H) = −
(

1

I3
− 1

I1

)
g3g1, (35)

ġ1 = (g2,H) = −
(

1

I1
− 1

I1

)
g1g2. (36)

This system is integrable because it admits two integrals, the energy (13) and the norm of the angular
momentum |G| = G. With this integral, we may regard the phase space of (34)–(36) as a foliation
of invariants manifolds

S2(G) = {(g1, g2, g3)|g2
1 + g2

2 + g2
3 = G2}. (37)

The trajectories will be the level contours of the energy ellipsoid,

Tkin =
1

2
ω ·G =

1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
=

1

2

(
g2
1

I1
+
g2
2

I2
+
g2
3

I3

)
, (38)

on the sphere (37), as can be seen in Fig. 2.

Fig. 2. Phase flow of the Euler–Poinsot problem.

Below we shall need also the expressions for the canonical momenta via the components of the an-
gular momentum G. As agreed above, the Euler angles φ, θ, ψ determine the orientation of the body
relative to some inertial reference frame. Let now the angles φo, J, l define the orientation of the body
relative to the invariable plane (one orthogonal to the angular-momentum vector G), as in Fig. 1;
and let h, I, g − φo be the Euler angles defining the orientation of the invariable plane relative to the ref-
erence one3). Evidently,

g1 = GsJ sl, g2 = GsJ cl, g3 = GcJ . (39)

3) It would be natural to denote the orientation of the body relative to the invariable plane with φo, θo, ψo, but we prefer to
follow the already established notations.
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It is now straightforward from (25)–(27) and (39) that

Φ = g1 sθ sψ + g2 sθ cψ + g3 cθ = G
(
cθ cJ + sθ sJ c(ψ−l)

)
= GcI , (40)

Θ = g1 cψ − g2 sψ = GsJ s(l−ψ), (41)

Ψ = g3 = GcJ . (42)

3. THE SERRET–ANDOYER TRANSFORMATION

3.1. Richelot (1850), Serret (1866), Radau (1869), Tisserand (1889)

The method presently referred to as the Hamilton–Jacobi one is based on the Jacobi equation derived
circa 1840. Though Jacobi’s book [33] was published only in 1866, the equation became known to the
scientific community already in 1842 when Jacobi included it into his lecture course. In 1850 Richelot
[25] suggested six constants of motion grouped into three canonically-conjugate pairs. These constants
became the attitude-dynamics analogues of the Delaunay variables emerging in the theory of orbits.
Later Serret [22] wrote down the explicit form for the generating function responsible for the canonical
transformation from (ψ, θ, φ,Ψ,Θ,Φ) to Richelot’s constants. His treatment was further polished by
Radau [23] and explained in detail by Tisserand [24].

The canonical transformation, undertaken by Serret,

(q1 ≡ φ, q2 ≡ θ, q3 ≡ ψ, p1 ≡ Φ, p2 ≡ Θ, p3 ≡ Ψ; H(q, p)) →
(Q1, Q2, Q3, P1, P2, P3; H∗(Q, P )), (43)

is based on the fact already known to the mathematicians of the second part of the 19th century: since
both descriptions, (q, p, H(q,p)) and (Q, P, H∗(Q,P)), are postulated to satisfy the Hamiltonian
equations, then the infinitesimally small quantities

dζ = pTdq −H dt, (44)

and

dζ̃ = QTdP + H∗ dt, (45)

are perfect differentials, and so is their sum

dS ≡ dζ + dζ̃ = pTdq + QTdP − (H−H∗) dt. (46)

If we start with a system described with (q, p, H(q,p)), it is worth looking for such a re-parameteriza-
tion (Q, P, H∗(Q,P)) that the new Hamiltonian H∗ is constant in time, because this will entail
simplification of the canonical equations for Q and P. Especially convenient would be to find a trans-
formation that would nullify the new Hamiltonian H∗, for in this case the new canonical equations
would render the variables (Q, P) constant. One way of seeking such transformations is to consider S
as a function of only q, P, and t. Under this assertion, the above equation will result in

∂S

∂t
dt+

∂S

∂q
dq +

∂S

∂P
dP = pT dq + QT dP − (H−H∗) dt (47)

whence

p =
∂S

∂q
, Q =

∂S

∂P
, H +

∂S

∂t
= H∗. (48)

The function S(q, P, t) can be then found by solving the Jacobi equation

H
(
q,

∂S

∂q
, t

)
+
∂S

∂t
= H∗

(
∂S

∂P
, P, t

)
. (49)
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In the free-spin case, the Jacobi equation becomes

1

2 sin2 θ

(
sin2 ψ

I1
+

cos2 ψ

I2

)(
∂S
∂φ

− ∂S
∂ψ

cos θ

)2

+
1

2

(
cos2 ψ

I1
+

sin2 ψ

I2

)(
∂S
∂θ

)2

+
1

2I3

(
∂S
∂ψ

)2

+

(
1

I1
− 1

I2

)
∂S
∂θ

(
∂S
∂φ

− ∂S
∂ψ

cos θ

)
sinψ cosψ

sin θ
+
∂S
∂t

= H∗

(
∂S

∂P
, P, t

)
. (50)

At this point, Serret [22], Radau [23], and Tisserand [24] chose to put H∗ equal to zero, thereby
predetermining the new variables (Q, P) to come out constants. (See, for example, [24], Eq. (21),
p. 382.) Thence the Jacobi equation (49) became equivalent to4)

H
(
q,

∂S

∂q

)
+
dS

dt
− ∂S

∂q

dq

dt
= 0. (51)

By taking into account that the initial Hamiltonian H depends explicitly neither on the time nor on the
angle φ, Serret and his successors granted themselves an opportunity to seek the generating function in
the simplified form of

S = A1t+A2φ+

∫
∂S

∂θ
dθ +

∫
∂S

∂ψ
dψ + C, (52)

the constant A1 being equal to the negative value of the Hamiltonian H, i.e., to the negative rotational
kinetic energy:

A1 = −Tkin. (53)

The second constant, A2, as well as the derivatives ∂S/∂θ and ∂S/∂ψ can be calculated via the first
formula (48):

A2 ≡ ∂S

∂φ
= Φ,

∂S

∂θ
= Θ,

∂S

∂ψ
= Ψ, (54)

so we get:

S = −t Tkin + Φφ+

∫
Θdθ +

∫
Ψdψ + C, (55)

Φ, Θ, and Ψ being given by formulae (40)–(42), and Φ being a constant of motion because H
is φ-independent. Plugging of (40)–(42) into (55) yields:

S = −t Tkin + Φφ+G

∫
cos Jdψ +G

∫
sinJ sin (l − ψ)dθ +C

= −t Tkin +Gφ cos I +G

∫
cos J dl +G

∫
[− cos J d (l − ψ) + sin J sin (l − ψ)dθ] + C, (56)

The latter expression can be simplified through the equality (derived in the Appendix A.1)

dg − d(φ− h) cos I = − cos J d (l − ψ) + sin J sin (l − ψ)dθ (57)

the angles (φ− h) and g being shown on Figs. 1 and 3. This will entail:

S = −t Tkin +Gh cos I +Gg +G

∫
cos J dl + C, (58)

4) The generating function should be written down exactly as (51) and not as

H

(
q,

∂S

∂q

)
+
dS

dt
−
∂S

∂q

dq

dt
−
∂S

∂P

dP

dt
= 0,

because the new momenta P are not playing the role of independent variables but will emerge as constants in the solution.
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where the constant C may be chosen, for example, as zero. At this point, the authors of the 19 th century
made use of two observations. First, in the unperturbed case, one can introduce the dimensionless time

u = n(t− to), (59)

n ≡
√(

G2 I−1
1 − 2Tkin

) (
I−1
2 − I−1

3

)
being the mean angular velocity (or, playing an astronomical

metaphor, the “mean motion”). At each instance of time, the value of so-defined u is unambiguously
determined by the instantaneous attitude of the rotator, via the solution of the equations of motion
(this solution is expressed through the elliptic functions of u). More specifically, u is a function
of Tkin, G, G cos I, θ, and ψ — the appropriate expression is given in Appendix A.2 below. Simply
from this definition it trivially follows that in the unperturbed case the difference u/n− t is an integral
of motion, because it is identically nil. Under perturbation, though, the afore mentioned function
u(Tkin, G,G cos I, θ, ψ), divided by n, will no longer furnish the actual values of the physical time
t. (It would, had we substituted in (59) the product with an integral.) Hence, under perturbation,
the integral of motion u/n− t will acquire time dependence.

Fig. 3. The same as the previous picture, but with fewer details. The reference coordinate system (inertial or, more
generally, precessing) is constituted by axes s1, s2, s3. A body-fixed frame is defined by the principal axes b1, b2, b3.
The third frame is constituted by the angular-momentum vector G and a plane orthogonal thereto (the so-called
invariable plane). The lines of nodes are denoted with i, l, j. The attitude of the body relative to the reference frame
is given by the Euler angles φ, θ, ψ. The orientation of the invariable plane with respect to the reference frame is
determined by the angles h and I . The inclination I is equal to the angle that the angular-momentum vector G makes
with the reference axis s3. The angle J between the invariable plane and the body equator coincides with the angle
that G makes with the major-inertia axis b3 of the body. The projections of the angular momentum toward the reference
axis s3 and the body axis b3 are H = G cos I and L = G cos J .

The second observation can be done if we consider a coordinate system defined by the angular-
momentum vector and a plane perpendicular thereto. This plane (in astronomy, called invariable) will
be chosen as in Fig. 1 and Fig. 3, so that the center of mass of the body lies in this plane. The Euler
angles defining the attitude of a body relative to the invariable plane are g, J, l, as on Fig. 1, and Fig. 3.
In the case of free spin, they obey the differential relation:5)

dg + cos J dl =
2Tkin
G

dt (60)

5)Tisserand ([24, p. 386]) and his contemporaries used to prove (60) by a somewhat tedious method based on formulae
connecting the angles J, l with the components of the body angular velocity ω and with the absolute value of the angular
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whose integration results in

g − 2Tkin
G

u

n
+

∫
cos J dl = go. (61)

Trivially, the expression standing in the left-hand side is an integral of motion in the unperturbed case,
because in this case it is equal to go. However, under disturbance the left-hand side will no longer be
equal to go (and thus will no longer remain an integral of motion), because neither (59) nor (60) will
hold.

The above two observations motivate the following equivalent transformation of (58):

S =
(
2
u

n
− t
)
Tkin +Gh cos I +Ggo. (62)

Now it might be tempting to state that, if we choose (P1, P2, P3) ≡ (G,G cos I, Tkin), then expres-
sion (62) would entail

∂S

∂G
= Q1 (63)

and

∂S

∂ (G cos I)
= Q2 (64)

where

Q1 ≡ go (65)

and

Q2 ≡ h (66)

are integrals of motion. These two formulae, if correct, would implement our plan set out via the second
equation (48).

In fact, Eqs. (62)–(63) do not immediately follow from (61), because the variations ofG, G cos I Tkin
are not independent from the variations of the angles involved. These variations are subject to some
constraints. A careful calculation, presented in the Appendix below, should begin with writing down an
expression for δS, with the said constraints taken into account. This will give us:

δS =
(u
n
− t
)
δTkin + hδ(G cos I) + goδG (67)

whence we deduce that (63)–(66) indeed are correct. We also see that the negative of the initial instant
of time (which, too, is a trivial integral of motion), turns out to play the role of the third new coordinate:

∂S

∂Tkin
= Q3 (68)

where

Q3 ≡ u

n
− t = −to. (69)

All in all, we have carried out a canonical transformation from the Euler angles and their conjugate
momenta to the Serret variables Q1 = go, Q2 = h, Q3 = −to and their conjugate momenta P1 = G,
P2 = G cos I, P3 = Tkin. In the modern literature, the constant P2 is denoted by H. Constants h, G, H
enter the Andoyer set of variables, discussed in the next subsection.

momentum:

I1 ω1 = G sin J sin l, I2 ω2 = G sin J cos l, I3 ω3 = G cos J.

We provide this proof in the Appendix A.3 below.
The Andoyer variables, which we shall introduce below, make (60) self-evident: (60) follows from Eqs. (84), (97), (99), and
(89).
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3.2. Andoyer (1923), Deprit and Elipe (1993)

While Serret [22] had come up with a full reduction of the problem, Andoyer [20] suggested a partial
reduction, based on a general method of obtaining a set of canonical variables (n coordinates and their n
conjugate moments) from a set of 2n variables that are not necessarily canonical. This general method
is discussed in the Appendix, Sect. A.5.

To understand the essence of that partial reduction, we shall start with a transformation from
the inertial to the body frame via a coordinate system associated with the invariable plane.

Referring to Fig. 1, let OQ1 and OQ3 denote the LON’s obtained from the intersection of the in-
variable plane with the inertial plane and with a plane fixed within the body, respectively. Let î be a unit
vector along the direction of OQ1, and ĵ be a unit vector along OQ3. Define a 3 − 1 − 3 − 1 − 3 rotation
sequence as follows:

• R(h, ŝ3), a rotation about ŝ3 by 0 6 h < 2π, mapping ŝ1 onto î.

• R(I, î), a rotation about î by 0 6 I < π, mapping ŝ3 onto the angular momentum vector, G.

• R(g,G/G), a rotation about a unit vector pointing in the direction of the angular momentum
by 0 6 g < 2π, mapping î onto ĵ.

• R(J, ĵ), a rotation about ĵ by 0 < J < π, mapping G onto b̂3.

• R(l, b̂3), a rotation about b̂3 by 0 6 l 6 2π, mapping ĵ onto b̂1.

The composite rotation may be written as

R(h, I, g, J, l) = R(l, b̂3)R(J, ĵ)R(g,G/G)R(I, î)R(h, ŝ3). (70)

Evaluation of the product of these five matrices will result in

R(h, I, g, J, l) = [v1, v2, v3] (71)

where

v1 =




(clcg − slcJsg)ch − (clsg + slcJcg)cI − slsJsIsh

−slcg − clcJsgch − (−slsg + clcJcg)cI − clsJsIsh

sJsgch + (sJcgcI + cJsI)sh


, (72)

v2 =




(clcg − slcJsg)sh + (clsg + slcJcg)cI − slsJsIch

−slcg − clcJsgsh + (−slsg + clcJcg)cI − clsJsIch

sJsgsh + (−sJcgcI − cJsI)ch


, (73)

v3 =




(clsg + slcJcg)sI + slsJcI

−slsg + clcJcgsI + clsJcI

−sJcgsI + cJcI


. (74)

A sufficient condition for the transformation (43) to be canonical can be formulated in terms of perfect
differentials. Given that the Hamiltonian lacks explicit time dependence, this condition will read6) [30]:

Φdφ+ Θdθ + Ψdψ = Ldl +Gdg +Hdh. (75)

6)We shall show shortly that indeed the perfect differentials criterion for canonical transformations holds in this case with
the perfect differential of the generating function being identically equal to zero.
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Let us first evaluate the left-hand side of (75). The differential ofR(φ, θ, ψ) is readily found to be [35]

dR(φ, θ, ψ) = ŝ3dφ+ l̂dθ + b̂3dψ. (76)

Multiplying both sides of (76) by G, and taking advantage of the identities (cf. (30)–(32)), one will arrive
at

G · ŝ3 = Φ, G · l̂ = G · (ŝ1cφ + ŝ2sφ) = Θ, G · b̂3 = Ψ, (77)

whence

Φ dφ+ Θ dθ + Ψdψ = G · ŝ3dφ+ G · (ŝ1 cφ + ŝ2 sφ) dθ + G · b̂3 dψ = G · dR. (78)

We shall now repeat the above procedure for the right-hand side of (75). The differential ofR(h, I, g, J, l)
is evaluated similarly to (76) so as to get

dR(h, I, g, J, l) = ŝ3 dh+ î dI +
G

G
dg + ĵ dJ + b̂3 dl. (79)

Since

G · ŝ3 = Φ, G · î = 0, G · G/G = G, G · ĵ = 0, G · b̂3 = Ψ, (80)

then multiplication of both sides of (79) by G will lead us to

G · dR = Φdh+Gdg + Ψdl. (81)

Together, (78) and (81) give

Φ dφ+ Θ dθ + Ψ dψ = G · dR = Φ dh+Gdg + Ψ dl, (82)

comparison whereof with (75) immediately yields

Φ = H, Ψ = L. (83)

To conclude, the transition from the Euler coordinates φ, θ, ψ to the coordinates h, g, l becomes
a canonical transformation (with a vanishing generating function, as promised above), if we choose
the momenta H, G, L conjugated to h, g, l as H = Φ, G = |G|, L = Ψ, correspondingly.

To get direct relations between the Euler angles and Andoyer angles h, g, l, we can compare
the entries of R(φ, θ, ψ) and R(h, I, g, J, l). Alternatively, we may utilize the spherical laws of sines
and cosines written for the spherical triangleQ1Q2Q3 [8]. Adopting the former approach, we first express
I and J in terms of the SA canonical momenta (cf. Fig. 1),

cI = H/G, cJ = L/G. (84)

Equating the (3, 3) entries, the quotient of the (1, 3) and (2, 3) entries, and the quotient of the (3, 1)
and the (3, 2) entries yields, respectively,

cθ =
LH

G2
− cg
G2

√
(G2 − L2)(G2 −H2), (85)

tanψ =

√
G2 −H2(Gsgcl + Lslcg) +Hsl

√
G2 − L2

−
√
G2 −H2(Gsgsl + Lclcg) +Hcl

√
G2 − L2

, (86)

tanφ = −
√
G2 − L2(Gsgch +Hshcg) + Lsh

√
G2 −H2

√
G2 − L2(Gsgsh −Hchcg) − Lch

√
G2 −H2

. (87)

To complete the equations of transformation relating the Eulerian variables to the Andoyer variables,
we utilize either Eqs. (27)–(27) or Eqs. (30)–(32) to calculate the magnitude of G and then express the
momentum Θ in terms of the Andoyer variables. Carrying out this procedure yields

Θ = GsJsψ−l =
√
G2 − L2sψ−l (88)

where the expressions for cψ and sψ may be readily obtained from Eq. (86).
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Substituting the identities (83) and (85)–(88) into (23) yields the new, single-degree-of-freedom
Hamiltonian

H(g, h, l, G,H,L) =
1

2

(
s2
l

I1
+

c2
l

I2

)
(G2 − L2) +

L2

2I3
. (89)

Alternatively, we could have utilized relations (39) and (84), to get

g1 = I1ω1 = GsJsl =
√
G2 − L2sl, (90)

g2 = I2ω2 = GsJcl =
√
G2 − L2cl, (91)

g3 = I3ω3 = L, (92)

insertion whereof into (38) would then lead us to the same result (89).

We would note that in the new Hamiltonian the coordinates g, h are cyclic, and hence the mo-
menta G,H are integrals of motion. Also, since

−G 6 L 6 G, (93)

the hamiltonian is non-negative,

H > 0. (94)

To get the canonical equations of motion, denote the generalized coordinates by q = [g, h, l]T and the
conjugate momenta by p = [G,H,L]T . Hamilton’s equations in the absence of external torques are

q̇ =
∂H
∂p

, (95)

ṗ = −∂H
∂q

. (96)

Evaluating Hamilton’s equations for (89) yields the canonical equations of free rotational motion:

ġ =
∂H
∂G

= G

(
sin2 l

I1
+

cos2 l

I2

)
, (97)

ḣ =
∂H
∂H

= 0, (98)

l̇ =
∂H
∂L

= L

(
1

I3
− sin2 l

I1
− cos2 l

I2

)
, (99)

Ġ = −∂H
∂g

= 0, (100)

Ḣ = −∂H
∂h

= 0, (101)

L̇ = −∂H
∂l

= (L2 −G2) sin l cos l

(
1

I1
− 1

I2

)
. (102)

Equations (99) and (102) are separable differential equations, and hence can be solved in a closed form
utilizing the fact that H is constant (due to the conservation of energy) [2]. The (l, L) phase plane may
be characterized by plotting isoenergetic curves of the Hamiltonian (89). An example plot is depicted by
Fig. 4, clearly showing the separatrix between rotational and librational motions.

4. THE CANONICAL PERTURBATION THEORY IN APPLICATION TO ATTITUDE
DYNAMICS AND TO ROTATION OF CELESTIAL BODIES

The content of this section is based mainly on the results of papers by Efroimsky [36] and Efroimsky
& Escapa [37], to which we refer the reader for details.
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Fig. 4. The phase plane of (l, L) comprising the isoenergetic curves of the Serret–Andoyer free-motion Hamiltonian.

4.1. A Modified Andoyer Set of Variables
To understand how the SA formalism may be used to model disturbing torques, let us start with

an orbital dynamics analogy. In the theory of orbits, a Keplerian ellipse or hyperbola, emerging as an
unperturbed two-body orbit, is considered as a sort of “elementary motion”, so that all the other available
trajectories are considered to be distortions of such conics, distortions implemented via endowing the
orbital parameters Cj with their own time dependence. Points of the trajectory can be donated by
the “elementary curves” either in a non-osculating manner, as in Fig. 5,7) or in the osculating one,
as in Fig. 6.

Fig. 5. The perturbed trajectory is a set of points belonging to a sequence of confocal instantaneous ellipses. The
ellipses are not supposed to be tangent, nor even coplanar to the orbit at the intersection point. As a result, the physical
velocity ṙ (tangent to the trajectory at each of its points) differs from the Keplerian velocity g (tangent to the ellipse).

Similarly, in attitude dynamics, a complex spin can be presented as a sequence of configurations
constituted by some “elementary rotations.” The easiest possibility is to use in this role the Eulerian
cones, i.e., the loci of the spin axis, corresponding to undisturbed spin states. These are the simple
motions exhibited by an undeformable unsupported rotator with no torques acting on it.8) Then,

7)Historically, the first attempt of using nonosculating elements dates back to Poincaré (1897) [43], though he never explored
them from the viewpoint of a non-Lagrange constraint choice. (See also Abdullah and Albouy (2001) [44, p. 430.])
Parameterization of nonosculation through a non-Lagrange constraint was offered in Efroimsky [45, 46].

8)Here one opportunity is to use, as “elementary” motions, the non-circular Eulerian cones described by the actual triaxial
top, when this top is unforced. Another opportunity is to use for this purpose the circular Eulerian cones described
by a dynamically symmetrical top (and to consider its triaxiality as another perturbation). The results of our further study
will be independent from the choice between these two options.
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Fig. 6. The perturbed trajectory is represented through a sequence of confocal instantaneous ellipses which are tangent
to the trajectory at the intersection points, i.e., are osculating. Now, the physical velocity ṙ (which is tangent to the
trajectory) will coincide with the Keplerian velocity g (which is tangent to the ellipse).

to implement a perturbed mode, we shall have to go from one Eulerian cone to another, just as in Figs. 5
and 6 we go from one Keplerian conic to another. Accordingly, a smooth “walk” over the instantaneous
Eulerian cones may be osculating or non-osculating.

The physical torques, the triaxiality of the rotator, and the fictitious torques caused by the frame non-
inertiality are among the possible disturbances causing this “walk.” The latter two types of disturbances
depend not only on the orientation but also on the angular velocity of the body.

In the theory of orbits, we express the Lagrangian of the reduced two-body problem in terms of the
spherical coordinates qj = {r, ϕ, θ}, then calculate the momenta pj and the Hamiltonian H(q, p), and
apply the Hamilton–Jacobi method [38] in order to get the Delaunay constants9)

{Q1, Q2, Q3; P1, P2, P3} ≡
{√

µa,
√
µa (1 − e2),

√
µa (1 − e2) cos i ; −Mo, −ω, −Ω

}
, (103)

µ being the reduced mass.

Very similarly, in attitude mechanics we specify a rotation state of a body by the three Euler angles
qj = φ, θ, ψ and their momenta Φ, Θ, Ψ. After that, we can perform a canonical transformation to
the afore described Serret variables (which are, in the unperturbed case, merely constants of motion).
A different choice of the generating function would lead one to a different set of arbitrary constants, one
consisting of the Andoyer variables’ initial values: {Lo, G, H, lo, go, h}, where Lo, lo and go are the
initial values of L, l and g. The latter set10) (which we shall call “modified Andoyer set”) consists only
of constants of integration, and hence the corresponding Hamiltonian becomes nil. Therefore, these
constants are the true analogues of the Delaunay set with Mo (while the conventional Andoyer set is
analogous to the Delaunay set with M used instead of Mo). The main result obtained below for the
modified Andoyer set {Lo, G, H, lo, go, h} will then be easily modified for the conventional Andoyer set
of variables {L, G, H, l , g, h}.

All in all, the canonical treatment of both orbital and rotational cases begins with

q̇ =
∂H(o)

∂p
, ṗ = −∂H

(o)

∂q
, (104)

q and p being the coordinates and their conjugated momenta, in the orbital case, or the Euler angles
and their momenta, in the rotation case. Then one switches, by a canonical transformation

q = f(Q, P, t),

p = χ(Q, P, t),
(105)

9)Be mindful that the more customary Delaunay variables include M instead of Mo, and the three latter elements have
opposite signs (and play the role of coordinates, not momenta). For such variables, the Delaunay Hamiltonian is the
negative of the actual Hamiltonian perturbation and is, above all, amended with µ2/(2L). However, the Hamilton–Jacobi
procedure performed with the actual, physical Hamiltonian perturbation leads exactly to the Delaunay constants (103) —

see Section 136 in Plummer (1918).
10)A similar set consisting of the initial values of Andoyer-type variables was pioneered by Fukushima and Ishizaki [39].
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to

Q̇ =
∂H∗

∂P
= 0, Ṗ = −∂H

∗

∂Q
= 0, H∗ = 0, (106)

where Q and P are the Delaunay variables, in the orbital case, or the (modified, as explained above)
Andoyer variables {Lo, G, H, lo, go, h}, in the attitude case.

This algorithm is based on the circumstance that an unperturbed Kepler orbit (and, similarly, an
undisturbed Euler cone) can be fully defined by six parameters so that:

1. These parameters are canonical variables {Q, P} with a zero Hamiltonian: H∗(Q, P) = 0; and
therefore these parameters are constants.

2. For constant Q and P, the transformation equations (105) are equivalent to the equations of
motion (104).

4.2. The Canonical Treatment of Perturbations

Under perturbations, the “constants” Q, P begin to evolve, so that after their substitution into

q = f (Q(t), P(t), t),

p = χ(Q(t), P(t), t)
(107)

(f and χ being the same functions as in (105) ), the resulting motion obeys the disturbed equations

q̇ =
∂
(
H(o) + ∆H

)

∂p
, ṗ = −∂

(
H(o) + ∆H

)

∂q
. (108)

We want our “constants” Q and P also to remain canonical and to obey

Q̇ =
∂ (H∗ + ∆H∗)

∂P
, Ṗ = −∂ (H∗ + ∆H∗)

∂Q
(109)

where

H∗ = 0 and ∆H∗ (Q, P t) = ∆H (q(Q,P, t), p(Q,P, t), t) . (110)

Above all, it is often desired that the perturbed “constants” Cj ≡ Q1, Q2, Q3, P1, P2, P3 (the Delaunay
constants, in the orbital case, or the modified Andoyer variables, in the rotation case) be osculating.
This demand means that the perturbed velocity should be expressed by the same function of Cj(t) and t
as the unperturbed velocity used to. In other words, the instantaneous “simple motions” parameterized
by the “constants” should be tangent to the perturbed trajectory. (In the orbital case, this situation is
shown on Fig. 6.) Let us check if osculation is always preserved under perturbation. The perturbed
velocity reads

q̇ = g + Φ (111)

where

g(C(t) t) ≡ ∂q(C(t) t)

∂t
(112)

is the functional expression for the unperturbed velocity; and

Φ(C(t) t) ≡
6∑

j=1

∂q(C(t) t)

∂Cj
Ċj(t) (113)

is the convective term. Since we chose the “constants” Cj to make canonical pairs (Q P) obeying
(109)–(110) with vanishing H∗, then insertion of (109) into (113) will result in

Φ =

3∑

n=1

∂q

∂Qn
Q̇n(t) +

3∑

n=1

∂q

∂Pn
Ṗn(t) =

∂∆H(q p)

∂p
. (114)
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So the canonicity demand is often incompatible with osculation. Specifically, whenever a momentum-
dependent perturbation is present, we still can use the ansatz (107) for calculation of the coordinates
and momenta, but can no longer use (112) for calculating the velocities. Instead, we must use (111).
Application of this machinery to the case of orbital motion is depicted on Fig. 5. Here the constantsCj =
(Qn Pn) parameterize instantaneous ellipses that, for nonzero Φ, are not tangent to the trajectory.
(For details see Efroimsky and Goldreich [40], [41], and Efroimsky [42].) In the case of rotational
motion, the situation will be identical, except that, instead of instantaneous Keplerian conics, one will
get instantaneous Eulerian cones (i.e., the loci of the rotational axis, corresponding to non-perturbed
spin states).

4.3. From the Modified Andoyer Variables to the Regular Ones

Practical calculations used in the theory of planetary rotation and in spacecraft attitude dynamics
are almost always set out in terms of the regular Andoyer variables, not in terms of their initial values
(the paper by Fukushima and Ishizaki [39] being a unique exception). Fortunately, all our gadgetry,
developed above for the modified Andoyer set, stays applicable for the regular set. To prove this, let us
consider the unperturbed parameterization of the Euler angles qn = (φ, θ, ψ) via the regular Andoyer
variables Aj = (l , g, h; L, G, H):

qn = fn (A1(C, t), . . . , A6(C, t)), (115)

each elementAi being a function of time and of the initial valuesCj = (lo, go, h; Lo, G, H). The explicit
form of parameterization (115) is given by (85)–(87). When a perturbation gets turned on, this
parameterization stays, while the time evolution of the elements Ai changes: beside the standard time-
dependence inherent in the free-spin Andoyer variables, the perturbed elements acquire an extra time-
dependence through the evolution of their initial values.11) Then the time evolution of an Euler angle
qn = (φ, θ, ψ ) will be given by a sum of two items: (1) the angle’s unperturbed dependence upon time
and time-dependent Andoyer variables; and (2) the convective term Φn that arises from a perturbation-
caused alteration of the Andoyer variables’ dependence upon the time:

q̇n = gn + Φn. (116)

The unperturbed part is

gn =

6∑

i=1

∂fn
∂Ai

(
∂Ai
∂t

)

C

, (117)

while the convective term is given by

Φn =

6∑

i=1

6∑

j=1

(
∂fn
∂Ai

)

t

(
∂Ai
∂Cj

)

t

Ċj =

6∑

j=1

(
∂fn
∂Cj

)

t

Ċj

=

3∑

j=1

(
∂fn
∂Qj

)

t

Q̇j +

3∑

j=1

(
∂fn
∂Pj

)

t

Ṗj =
∂∆H(q, p)

∂pn
, (118)

where the set Cj is split into canonical coordinates and momenta like this: Qj = (lo, go, h) and Pj =
(Lo, G, H). In the case of free spin they obey the Hamilton equations with a vanishing Hamiltonian
and, therefore, are all constants. In the case of disturbed spin, their evolution is governed by (109)–(110),
substitution whereof in (118) once again takes us to (114). This means that the nonosculation-caused

11)This is fully analogous to the transition from the unperturbed mean longitude,

M(t) = Mo + n (t− to), with Mo, n, to = const,

to the perturbed one,

M(t) = Mo(t) +

∫ t

to

n(t′)dt, with to = const,

in orbital dynamics.
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convective corrections to the velocities stay the same, no matter whether we parameterize the Euler
angles through the modified Andoyer variables (variable constants) or through the regular Andoyer vari-
ables. This invariance will become obvious if we consider the analogy with orbital mechanics: in Fig. 5,
the correction Φ is independent of how we choose to parameterize the non-osculating instantaneous
ellipse — through the set of Delaunay constants containing Mo, or through the customary set of
Delaunay elements containing M . (The latter set is, historically, chosen to correspond to a Hamiltonian
variation taken with an opposite sign — see footnote 8 above. This subtlety, however, is unimportant
to our point.)

4.4. The Andoyer Variables Introduced in a Precessing Frame of Reference
4.4.1. Physical motivation

Let us consider a case when the perturbing torque depends not only on the instantaneous orientation
but also on the instantaneous angular velocity of the rotator. In particular, we shall be interested in
the fictitious torque emerging when the description is carried out in a precessing coordinate system.
This situation is often encountered in the theory of planetary rotation, where one has to describe a
planet’s spin not in inertial axes but relative to a frame associated with the planet’s circumsolar orbital
plane (the planet’s ecliptic). The latter frame is noninertial, because the ecliptic is always precessing
due to the perturbations exerted by the other planets. The reason why astronomers need to describe the
planet’s rotation not in an inertial frame but in the ecliptic one is that this description provides the history
of the planet’s obliquity, i.e., of the equator’s inclination on the ecliptic. As the obliquity determines the
latitudinal distribution of insolation, the long-term history of the obliquity is a key to understanding
climate evolution. Interestingly, the climate is much more sensitive to the obliquity of the planet than
to the eccentricity of its orbit. (Murray et al. [47], Ward [48, 49])

The canonical theory of rotation of a rigid body in a precessing coordinate frame was pioneered
by Giacaglia and Jefferys [31]. It was based on the Andoyer variables and was used by the authors
to describe rotation of a space station. This theory was greatly furthered by Kinoshita [8] who applied it
to rotation of the rigid Earth. Later it was extended by Getino, Ferrandiz, and Escapa [9–11] to the case
of nonrigid Earth. Simplified versions of the Kinoshita theory were employed by Laskar and Robutel [14]
and by Touma and Wisdom [15, 16] in their studies of the long-term evolution of the obliquity of Mars.
While a detailed explanation of this line of research will require a separate review paper, here we shall
very briefly describe the use of the Andoyer variables in the Kinoshita theory, and shall dwell, following
Efroimsky and Escapa [37], on the consequences of these variables being nonosculating.

4.4.2. Formalism

Consider an unsupported rigid body whose spin should be described with respect to a coordinate
system, which itself is precessing relative to some inertial axes. The said system is assumed to precess
at a rate µ so the kinetic energy of rotation, in the inertial axes, is given by

Tkin =
1

2

3∑

i=1

Ii (ωi + µi)
2 (119)

where ω is the body-frame-related angular velocity of the body relative to the precessing coordinate
system, while µ is the angular velocity relative to the inertial frame. In (119), both ω and µ are resolved
into their components along the principal axes. The role of canonical coordinates will be played the Euler
angles qn = φ, θ, ψ that define the orientation of the principal body basis relative to the precessing
coordinate basis. To compute their conjugate momenta pn = Φ, Θ, Ψ, let us assume that noninertiality
of the precessing coordinate system is the only angular-velocity-dependent perturbation. Then the
momenta are simply the derivatives of the kinetic energy. With aid of (5)–(7), they can be written as

Φ =
∂Tkin

∂φ̇
= I1 (ω1 + µ1) sin θ sinψ + I2 (ω2 + µ2) sin θ cosψ + I3 (ω3 + µ3) cos θ, (120)

Θ =
∂Tkin

∂θ̇
= I3 (ω3 + µ3), (121)

Ψ =
∂Tkin

∂ψ̇
= I1 (ω1 + µ1) cosψ − I2 (ω2 + µ2) sinψ. (122)
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These formulae enable one to express the angular-velocity components ωi and the derivatives q̇n =

( φ̇, θ̇, ψ̇) via the momenta pn = (Φ, Θ, Ψ). Insertion of (120–122) into

H =
∑

n

q̇n pn −L = φ̇Φ + θ̇Θ + ψ̇Ψ − T + V (φ, θ, ψ) (123)

results, after some algebra, in

H = T + ∆H (124)

where

∆H = − µ1

[
sinψ

sin θ
(Φ − Ψcos θ) + Θcosψ

]

− µ2

[
cosψ

sin θ
(Φ − Ψcos θ) − Θsinψ

]
− µ3Ψ + V (φ, θ, ψ), (125)

and the potential V is presumed to depend only upon the angular coordinates, not upon the momenta.
As can be easily seen from (25)–(27), formula (125) is simply another form of the relation ∆H = −µ · g
which, according to (90)–(92), can also be expressed via the Andoyer variables solely:

∆H = −µ · g = −µ1

√
G2 − L2 sin l − µ2

√
G2 − L2 cos l − µ3L. (126)

Now let us employ the machinery described in the preceding subsection. The Euler angles connecting
the body axes with the precessing frame will now be expressed via the Andoyer variables by means
of (115). (The explicit form of the functional dependence (115) is given by (85)–(87), but this exact form
is irrelevant to us.) The fact that the Andoyer variables are introduced in a noninertial frame is accounted
for by the emergence of the µ-terms in the expression (125) for the disturbance ∆H. Insertion of (125)
into (118) entails:

q̇n = gn +
∂∆H
∂pn

(127)

the convective terms being given by

∂∆H
∂P1

=
∂∆H
∂Φ

= −µ1 sinψ + µ2 cosψ

sin θ
, (128)

∂∆H
∂P2

=
∂∆H
∂Θ

= −µ1 cosψ + µ2 sinψ, (129)

∂∆H
∂P3

=
∂∆H
∂Ψ

= (µ1 sinψ + µ2 cosψ) cot θ − µ3. (130)

It should be stressed once again that the indices n = 1, 2, 3 in (127) number the Euler angles, so that q̇n
stand for φ̇, θ̇, ψ̇, and pn signify Φ, Θ, Ψ. At the same time, the subscripts i = 1, 2, 3 accompanying
the components of µ in (128) correspond to the principal body axes.

4.4.3. The physical interpretation of the Andoyer variables defined in a precessing frame

The physical content of the Andoyer construction built in inertial axes is transparent: by definition,
the element G is the magnitude of the angular-momentum vector, L is the projection of the angular-
momentum vector on the principal axis b̂3 of the body, while H is the projection of the angular-
momentum vector on the ŝ3 axis of the inertial coordinate system. The variable h conjugate to H
is the angle from the inertial reference longitude to the ascending node of the invariable plane
(the one perpendicular to the angular momentum). The variable g conjugate to G is the angle from
the ascending node of the invariable plane on the reference plane to the ascending node of the equator
on the invariable plane. Finally, the variable conjugate to L is the angle l from the ascending node
of the equator on the invariable plane to the b̂1 body axis. Two auxiliary quantities defined through

cos I =
H

G
, cos J =

L

G
,
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too, have evident physical meaning: I is the angle between the angular-momentum vector and the ŝ3

space axis, while J is the angle between the angular-momentum vector and the b̂3 principal axis of the
body, as can be seen on Fig. 1.

Will all the Andoyer variables and the auxiliary angles I and J retain the same physical meaning
if we re-introduce the Andoyer construction in a noninertial frame? The answer is affirmative, because
a transition to a noninertial frame is no different from any other perturbation: precession of the fiducial
frame (̂s1, ŝ2, ŝ3) is equivalent to emergence of an extra perturbing torque, one generated by the inertial
forces. In the original Andoyer construction assembled in an inertial space, the invariable plane was
orthogonal to the instantaneous direction of the angular-momentum vector: If the perturbing torques
were to instantaneously vanish, the angular-momentum vector (and the invariable plane orthogonal
thereto) would freeze in their positions relative to the fiducial axes (ŝ1, ŝ2, ŝ3) (which were inertial and
therefore indifferent to vanishing of the perturbation). Now, that the Andoyer construction is built in
a precessing frame, the fiducial plane is no longer inertial. Nevertheless if the inertial torques were to
instantaneously vanish, then the invariable plane would still freeze relative to the fiducial plane (because
the fiducial plane would cease its precession). Therefore, all the variables will retain their initial meaning.
In particular, the variables I and J defined as above will be the angles that the angular-momentum
makes with the precessing ŝ3 space axis and with the b̂3 principal axis of the body, correspondingly.

4.4.4. Calculation of the angular velocities via the Andoyer variables introduced in a precessing frame
of reference

Let us now get back to formulae (5)–(7) for the principal-body-axes-related components of the
angular velocity. These formulae give the angular velocity as a function of the rates of Euler angle’s
evolution, so one can symbolically denote the functional dependence (5)–(7) as ω = ω(q̇). This depen-
dence is linear, so

ω (q̇(A) ) = ω(g(A)) + ω (∂∆H/∂p), (131)

A being the set of Andoyer variables. Direct substitution of (128)–(130) into (5)–(7) will then show that
the second term on the right-hand side in (131) is exactly −µ:

ω(q̇(A)) = ω(g(A)) − µ. (132)

Since the “total” angular velocity ω(q̇) is that of the body frame relative to the precessing frame, and
since µ is that of the precessing frame relative to some inertial frame, then ω(g(A)) will always
return the angular velocity of the body relative to the inertial frame of reference, despite that
the Andoyer variables A were introduced in a precessing frame. This nontrivial fact has immediate
ramifications for the theory of planetary rotation. These will be considered in the subsequent subsections.

In short, the above may be summarized as:

ω ( q̇(A) ) = ω( g(A)) + ω (∂∆H/∂p),

ω(q̇(A)) = ω
(rel)

,

ω(∂∆H/∂p) = µ,

ω
(rel)

= ω
(inert) − µ.





=⇒ ω(g(A)) = ω
(inert)

(133)

where the entities are defined as follows:

ω
(rel) ≡ the relative angular velocity,

i.e., the body’s angular velocity relative to a precessing orbital frame;

µ ≡ the precession rate of that frame with respect to an inertial one;

ω
(inert) ≡ the inertial angular velocity,

i.e., the body’s angular velocity with respect to the inertial frame.

To better understand the origin of (133), let us get back to the basic Andoyer formalism introduced
in the previous subsection. As the first step, we introduce, in an unperturbed setting (i.e., for an
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unsupported rigid rotator considered in an inertial frame), the parameterization of the Euler angles
qn = (φ, θ, ψ) through the Andoyer variables Aj = (l , g, h; L, G, H):

qn = fn (A1(C, t), . . . , A6(C, t)) , (134)

each variable Ai being dependent upon its initial value Ci and the time:

Ai = Ci +

∫ t

to

ni dt (135)

where the mean motions12) ni may bear dependence upon the other Andoyer variables Aj . As already
mentioned above, this is analogous to the evolution of the mean longitude M = Mo + n(t− to)
in the undisturbed two-body problem (where the mean motion n is a function of another orbital element,
the semimajor axis a).

The initial values Ci are integration constants, so in the unperturbed case one can calculate

the velocities q̇n =
(
φ̇, θ̇, ψ̇

)
simply as the partial derivatives

gn(A) ≡
(
∂qn(A(C, t))

∂t

)

C

≡
∑

i

∂qn(A)

∂Ai

(
∂Ai(C, t)

∂t

)

C

. (136)

As the second step, we employ this scheme in a perturbed setting. In particular, we introduce a per-
turbation caused by our transition to a coordinate system precessing at a rate µ. Our Euler angles now
describe the body orientation relative to this precessing frame. By preserving the parameterization (134),
we now introduce the Andoyer variables Ai in this precessing frame. Naturally, the time evolution of Ai

changes because the frame-precession-caused Hamiltonian disturbance ∆H now shows itself in the
equations of motion. This disturbance depends not only on the body’s orientation but also on its angular
velocity, and therefore our Andoyer variables cannot be osculating (see equation (114) and the paragraph
thereafter). This means that the unperturbed velocities, i.e., the partial derivatives (136) no longer return
the body’s angular velocity relative to the precessing frame (i.e., relative to the frame wherein the Andoyer
variables were introduced). This angular velocity is rather given by the sum (116). However, as explained
above, the unperturbed expression g(A), too, has a certain physical meaning: when plugged into ω(g),
it always returns the angular velocity in the inertial frame. It does so even despite fact that now
the Andoyer parameterization is introduced in a precessing coordinate frame.13)

4.4.5. Example 1. The theory of Earth rotation

As an example, let us consider the rigid-Earth-rotation theory by Kinoshita [8]. Kinoshita began with
the standard Andoyer formalism in inertial axes. He explicitly wrote down the expressions (115) for the
Euler angles qn = fn(A) of the figure axis of the Earth, differentiated them to get the expressions for
the velocities q̇n as functions of the Andoyer variables: q̇n = gn(A), and then used those expressions

12)Three of the six Andoyer variables have vanishing ni in the unperturbed free-spin case, but at this point it is irrelevant.
13)This parallels a situation in orbital dynamics, where the role of canonical variables is played by the Delaunay constants —

see expression (103) and a footnote accompanying it. In the unperturbed setting (the two-body problem in inertial axes),
the Cartesian coordinates r ≡ (x1, x2, x3) and velocities (ẋ1, ẋ2, ẋ3) are expressed via the time and the Delaunay
constants by means of the following functional dependencies:

r = f (C, t) and v = g (C, t) , where g ≡ ∂f/∂t.

If we want to describe a satellite orbiting a precessing oblate planet, we may fix our reference frame on the precessing
equator of date. Then the two-body problem will get amended with two disturbances. One, ∆Hoblate, caused by the
presence of the equatorial bulge of the planet, will depend only upon the satellite’s position. Another one, ∆Hprecess,
will stem from the noninertial nature of our frame and, thus, will give birth to velocity-dependent inertial forces. Under these
perturbations, the Delaunay constants will become canonical variables evolving in time. As explained in subsection 4.2, the
velocity-dependence of one of the perturbations involved will make the Delaunay variables nonosculating. On the one hand,
the expression r = f (C(t), t) will return the correct Cartesian coordinates of the satellite in the precessing equatorial
frame, i.e., in the frame wherein the Delaunay variables were introduced. On the other hand, the expression g (C, t)
will no longer return the correct velocities in that frame. Indeed, according to (111)–(114), the Cartesian components of the
velocity in the precessing equatorial frame will be given by g (C, t) + ∂∆Hprecess/∂p. However, it turns out that g (C, t)
renders the velocity with respect to the inertial frame of reference (Efroimsky [42, 50]).
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to write down the angles Ir(g(A)) and hr(g(A)) that define the orientation of the rotation axis14).
Kinoshita pointed out that one’s knowledge of the solar and lunar torques, exerted on the Earth due
to its nonsphericity, would enable one to write down the appropriate Hamiltonian perturbations and to
calculate, by the Hori–Deprit method ([3]–[7]), the time evolution of the Andoyer variables. Substitution
thereof into (134) would then give the time evolution of the Euler angles that define the figure axis of
the planet. Similarly, substitution of the calculated time dependencies of the Andoyer variables A into
the expressions for Ir(g(A)) and hr(g(A)) would yield the time evolution of the planet’s rotation axis.

The situation, however, was complicated because Kinoshita’s goal was to calculate the dynamics
relative to the precessing ecliptic plane. To achieve the goal, Kinoshita amended the afore described
method by adding, to the lunisolar perturbations, the momentum-dependent frame-precession-caused
term (see our formula (125) above). Stated differently, he introduced the Andoyer variables in a
precessing frame of reference. This made his Andoyer variables A nonosculating. Kinoshita missed this
circumstance and went on to calculate the time dependence of the so introduced Andoyer variables.
He then plugged those into the expressions qn = fn(A) for the Euler angles of the figure and into the
expressions Ir(g(A)) and hr(g(A)) for the orientation angles of the Earth rotation axis. The expressions
qn = fn(A) still gave him the correct Euler angles of the Earth figure (now, relative to the precessing
ecliptic plane). The expressions Ir(g(A)) and hr(g(A)) did NOT give him the correct orientation of the
angular-velocity vector relative to the precessing frame, because the Andoyer variables introduced by
Kinoshita in the precessing frame were nonosculating. This peculiar feature of his theory have long
been ignored, because no direct methods of measurement of the angular velocity of the Earth had
been developed until 2004. While the thitherto available observations referred only to the orientation
of the Earth figure (Kinoshita [51]), a technique based on ring laser gyroscopes (Schreiber et al. [52])
and a VLBI technique (Petrov 2007 [53]) later made it possible to directly measure the instantaneous
angular velocity of the Earth relative to an inertial frame.

As we demonstrated above, when the Andoyer variables A are introduced in a precessing frame,
the expressions qn = fn(A) return the Euler angles of the body relative to this precessing frame,
while ω(gn(A)) returns the body-frame-related angular velocity relative to the inertial frame. Ac-
cordingly, the expressions Ir(g(A)) and hr(g(A)) return the direction angles (as seen by an observer
located on the body) of the instantaneous angular velocity relative to the inertial frame, i.e., the velocity
observed in [52]. This way, what might have been a problem of the canonical Kinoshita theory became
its advantage. It is exactly due to the nonosculation of the Andoyer elements, introduced in a precessing
ecliptic frame, that this theory always returns the angular velocity of the Earth relative to inertial axes.
We see that sometimes loss of osculation may be an advantage of the theory.

4.4.6. Example 2. The theory of Mars rotation

Two groups ([14] and [15, 16]) independently investigated the long-term evolution of Mars’ rotation,
using a simplified and averaged version of the Kinoshita Hamiltonian. The goal was to obtain a long-term
history of the Martian spin axis’ obliquity, i.e., of the angle between the Martian spin axis and a normal
to the Martian ecliptic. Just as in the afore described case of the Earth, the Martian spin axis is evolving
due to the solar torque acting on the oblate Mars, while the Martian ecliptic plane is in precession due
to the perturbations exerted upon Mars by the other planets. Since for realistic rotators the Andoyer
angle J is typically very small (i.e., since the angular-velocity and angular-momentum vectors are
almost parallel), one may, in astronomical applications, approximate the obliquity with the angle made
by the planet’s angular-momentum vector and the ecliptic. When the Andoyer construction is built in a
precessing frame (the fiducial basis (̂s1, ŝ2, ŝ3) being fixed on the planet’s ecliptic), this assertion means
that the obliquity is approximated with the Andoyer angle I. When the Andoyer variables are introduced
in the traditional way (the basis (ŝ1, ŝ2, ŝ3) being inertial), the above assertion means that one has
to find the orientation of the angular momentum relative to the the inertial axes (i.e., to calculate
the Euler angles h, I) and to find the orientation of the ecliptic relative to the same inertial axes.
Then the orientation of the angular momentum with respect to the ecliptic will be found, and it will
be an approximation for the obliquity.

14)For the Euler angles, Kinoshita chose notations, which are often used by astronomers: h, I, φ and which are different from
the convention qn = φ, θ, ψ used in physics.
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The former approach was implemented by Laskar and Robutel [14], the latter by Touma and Wisdom
[15, 16]. Despite that these two teams introduced the Andoyer variables in different frames of reference,
the outcomes of their calculations were very close, minor differences being attributed to other reasons.15)

This coincidence stems from the afore explained fact that the Andoyer variables and the Andoyer angles
I, J retain their physical meaning when introduced in a precessing frame. (See subsection 4.4.3.)

5. THE SADOV VARIABLES

The Andoyer variables have the merit that they reduce the Hamiltonian of an unsupported and torque-
free rigid body to one and a half degrees of freedom, the resulting expression for the Hamiltonian being
very simple. However, except for the case of axial symmetry, these variables are not action–angle.

Sadov [29] and Kinoshita [27], in an independent way, obtained sets of action–angle variables for
the rotational motion of a triaxial rigid body. Both sets of variables are very similar. Essentially, they
are obtained by solving the Hamilton–Jacobi equation stemming from the Hamiltonian in the Andoyer
variables. Sadov’s transformation is formulated in terms of the Legendre elliptic functions of the first and
third kind, while in the Kinoshita transformation the Heuman Lambda function emerges.

Here we present the approach of Sadov who began by introducing an intermediate set of canonical
variables (β, α) that nullify the Hamiltonian. The generating function S of the transformation

(`, g, h, L,G,H) −→ (β1, β2, β3, α1, α2, α3),

can be by through solving the corresponding Jacobi equation

1

2

(
sin2 `

I1
+

cos2 `

I2

)[(
∂S
∂g

)2

−
(
∂S
∂`

)2
]

+
1

2I3

(
∂S
∂`

)2

+
∂S
∂t

= 0.

Since the system is autonomous and variables g and h are cyclic, the generating function may
be expressed as

S = −α1 t+ α2g + α3h+ U(`;α1, α2, α3),

wherefrom
(
∂U
∂`

)2 [( 1

I3
− 1

I2

)
−
(

1

I1
− 1

I2

)
sin2 `

]
=

(
2α2

1 − α2
2

1

I2

)
− α2

2

(
1

I1
− 1

I2

)
sin2 `,

and further simplification yields a simple equation for the function U :
(
∂U
∂`

)2

= I3

(
a+ b sin2 `

c+ d sin2 `

)
,

with

a = I1(α
2
2 − 2α1I2), c = I1(I3 − I2) > 0,

b = (I2 − I1)α
2
2 > 0, d = I3(I2 − I1) > 0.

Hence, the transformation is

L =
√
I3

√
a+ b sin2 `

c+ d sin2 `
, β1 = −t+

∂U
∂α1

,

G =
∂S
∂g

= α2, β2 = g +
∂U
∂α2

,

H =
∂S
∂h

= α3, β3 = h,

(137)

15) While Touma and Wisdom [15, 16] employed unaveraged equations of motion, Laskar and Robutel [14] used orbit-
averaged equations.
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whence we see that

H = −∂S
∂t

= α1. (138)

At this point, Sadov introduced16) a parameter κ and a so-called state function λ as

κ2 =
I3(I2 − I1)

I1(I3 − I2)
> 0, λ2 = κ2 I1

I3

2I3α1 − α2
2

α2
2 − 2I1α1

> 0. (139)

Via these quantities, the angular momentum L in (137) may be expressed as

L2 = α2
2

κ2

κ2 + λ2

1 − λ2 + (κ2 + λ2) sin2 `

1 + κ2 sin2 `
, (140)

and the Hamiltonian (138) becomes:

H =
α2

2

2 I1I3

I3λ
2 + I1κ

2

κ2 + λ2
.

With this transformation accomplished, Sadov proceeded to a second one,

(`, g, h, L,G,H) −→ (ϕ`, ϕg, ϕh, I`, Ig, Ih), (141)

the new actions being

I` =
1

2π

∮
Ld`, Ig =

1

2π

∮
Gdg = G = α2, Ih =

1

2π

∮
H dh = H = α3.

While the variables (β, α) corresponded to a vanishing Hamiltonian, the action–angle ones correspond
to the initial Hamiltonian of Andoyer (though now this Hamiltonian has, of course, to be expressed
through these new variables).

By means of a convenient auxiliary variable z introduced through

sin ` =
cos z√

1 + κ2 sin2 z
, cos ` = −

√
1 + κ2 sin z√
1 + κ2 sin2 z

, (142)

it is possible to derive from (140) that

I` =
1

2π

∮
Ld` =

2α2

√
1 + κ2

πκ
√
κ2 + λ2

[
(κ2 + λ2)Π(κ2, λ) − λ2K(λ)

]
. (143)

where K and Π are the complete elliptical integrals of the first and the third kind, respectively.
Symbolically, the above expression may be written as I` = I`(Ig, λ) = Ig f(λ). According to the Im-

plicit Function Theorem, there exists a function φ(I`/Ig) inverse, locally, to f(λ). Let us denote this
function as λ = φ(I`/Ig). Sadov [29] proved that it is defined for all values (I`/Ig) > 0, and that
it is analytic for (I`/Ig) > 0 or (I`/Ig) 6= (2/π) arctan κ at λ = 1.

Since the Hamiltonian is known to be

H =
I2
g

2 I1I3

I3λ
2 + I1κ

2

κ2 + λ2
, (144)

the angular variables could be found by integrating the Hamilton equations

ϕ̇` =
∂H
∂I`

, ϕ̇g =
∂H
∂Ig

, ϕ̇h =
∂H
∂Ih

,

if the explicit relation between the action momenta and λwere known. Unfortunately we do not have not
such a relation at hand. To circumvent this difficulty, the generating function of the transformation must
be derived.

16)These quantities already appear, in a different context, in [24, p. 394]
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Let W be the generating function of the transformation (141) from the Andoyer variables to the action
and angle variables. It may be chosen as

W = Igg + Ihh+ V(`; I`, Ig),

and the equations of this transformation will read:

L =
∂V
∂`
, ϕ` =

∂V
∂I`

,

G =
∂W
∂g

= Ig, ϕg =
∂W
∂Ig

= g +
∂V
∂Ig

,

H =
∂W
∂h

= Ih, ϕg =
∂W
∂Ih

= h.

The generating function V is obtained directly from the quadrature

V(`; I`, Ig) =

∫ `

`0

L(`; I`, Ig) d`,

where we have to replace L with expression (140).

To calculateϕ` and ϕg, we need to find the partial derivatives ∂λ/∂I` and ∂λ/∂Ig. Since λ = φ(I`/Ig)
and I` = Igf(λ), then

∂I`
∂λ

= Ig
∂f

∂λ
=

1

2π

∮
∂L

∂λ
= −Ig2κλ(1 + κ2)1/2

π(κ2 + λ2)3/2
K(λ)

After introducing notation u ≡ I`/Ig, we can write:

∂φ

∂u
=

1

∂u/∂φ
= Ig

1

∂I`/∂φ
= Ig

1

∂I`/∂λ
= − π(κ2 + λ2)3/2

2κλ(1 + κ2)1/2K(λ)
(145)

whence

∂λ

∂Ig
=
∂φ

∂u

∂u

∂Ig
=
I`
I2
g

π(κ2 + λ2)3/2

2κλ(1 + κ2)1/2K(λ)
=

(κ2 + λ2)

Igκ2λK(λ)

[
(κ2 + λ2)Π(κ2, λ) − λ2K(λ)

]
.

Now, taking into account (140) and employing the chain rule, we arrive at

ϕ` =
∂V
∂I`

=
∂V
∂λ

∂λ

∂I`
=
∂λ

∂I`

∫ `

`0

∂L

∂λ
d`,

ϕg = g +
∂

∂Ig

∫ `

`0

Ld` = g +
1

Ig

∫ `

`0

Ld`+
∂λ

∂Ig

∫ `

`0

∂L

∂λ
d`.

(146)

Straightforward differentiation of (140) yields:

∂L

∂λ
= −Igκλ(1 + κ2)

(κ2 + λ2)3/2
1√

1 + κ2 sin2 `
√

1 − λ2 + (κ2 + λ2) sin2 `
.

With the help of (142), we can now compute the quadratures
∫ `

`0

∂L

∂λ
d` = −Igκλ(1 + κ2)1/2

(κ2 + λ2)3/2
F (z, λ)

and

∫ `

`0

Ld` =
Ig
κ

√
1 + κ2

κ2 + λ2

[
(κ2 + λ2)Π(z, κ2, λ) − λ2K(λ)

]
,
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insertion whereof into Eqs. (146) results in

ϕ` =
π

2

F (z, λ)

K(λ)
,

ϕg = g +
1

κ

√
(κ2 + λ2)(1 + κ2)

[
Π(z, κ2, λ) − Π(κ2, λ)F (z, λ)

K(λ)

]
.

(147)

Inversion of the first of these expressions entails

z = am(2ϕ`K(λ)/π, λ).

(For the definition of the elliptic function am see Appendix A.2 below.) Thus, we have the Andoyer angle
g expressed via the action-angle variables:

g = ϕg +
1

κ

√
(κ2 + λ2)(1 + κ2)

[
2

π
Π(κ2, λ)ϕ` − Π

(
am(2ϕ`K(λ)/π, λ), κ2, λ

)]
,

while the angle ` is obtained directly from expression (142).

6. CONCLUSIONS

In this paper, we have reviewed the Serret–Andoyer (SA) formalism for modeling and control of rigid-
body dynamics from the dynamical systems perspective. We have dwelt upon the important topic
of modeling of general, possibly angular velocity-dependant disturbing torques, and upon the inter-
connection between the Andoyer and the Sadov sets of variables. We have also contributed some new
insights.

The first insight is that the Andoyer variables turn out to be non-osculating in the general case
of angular-velocity-dependent perturbation. The second insight is that even when these variables are
introduced in a precessing reference frame, they preserve their interconnection with the components
of the angular momentum — a circumstance that makes the Andoyer variables especially valuable in
astronomical calculations.

In summary, this treatise constitutes a first step towards understanding the consequences of using
the SA formalism as a single, generic language for modelling rigid body dynamics in diverse —

and seemingly unrelated — areas such as celestial mechanics, satellite attitude control, and geometric
mechanics.

APPENDIX

A.1. Spherical-Trigonometry Formula (57)

The standard formula of the spherical trigonometry [34],

cos g = cos(φ− h) cos(ψ − l) + sin(φ− h) sin(ψ − l) cos(π − θ), (148)

immediately entails:

sin g dg =[sin(φ− h) cos(ψ − l) − sin(φ− h) sin(ψ − l) cos θ] d(φ− h)

+ [cos(φ− h) sin(ψ − l) − sin(φ− h) cos(ψ − l) cos θ] d(ψ − l)

+ sin(φ− l) sin(ψ − l) sin θ dθ. (149)

The other standard formulae of spherical trigonometry enable one to transform (149) into

sin g dg = sin g cos I d(φ− h) + sin g cos J d(ψ − l) + sin(φ− h) sin(ψ − l) sin θ dθ

= sin g cos I d(φ− h) + sin g cos J d(ψ − l) + sin(ψ − l) sin J sin g dθ, (150)

wherefrom equality (57) follows.
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A.2. The Dimensionless Time u and Its Interconnection with Tkin, G, G cos I, θ and ψ

First let us recall some basics. As agreed in the text, we choose the body axes to coincide
with the principal axes of inertia, b̂1, b̂2, b̂3. This makes the inertia tensor look like:

I =




I1 0 0

0 I2 0

0 0 I3


, (151)

Decomposing the body angular velocity ω over the principal basis,

ω = ω1b̂1 + ω2b̂2 + ω3b̂3, (152)

we can write twice the kinetic energy as

2Tkin = ωIω = I1ω
2
1 + I2ω

2
2 + I3ω

2
3, (153)

and the body-frame-related angular-momentum vector as

g = I · ω. (154)

The square of this vector will be:

g2 = I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3, (155)

while its direction cosines with respect to an invariable plane-based coordinate system will read:17)

α′ =
g1

G
=
I1ω1

G
, β′ =

g2

G
=
I2 ω2

G
, γ′ =

g3

G
=
I3ω3

G
, (156)

G denoting the magnitude of the angular momentum vector: G ≡ |g|. At this point it is convenient
to define an auxiliary quantity P 2 via

P 2 ≡ (α′)2

I1
+

(β′)2

I2
+

(γ′)2

I3
. (157)

Substitution of (156) into (157) shows that this auxiliary quantity obeys

G2P 2 = I1ω
2
1 + I2ω

2
2 + I3ω

2
3 (158)

or, equivalently,

G2P 2 = 2Tkin. (159)

We see that P 2 is an integral of motion, a circumstance that will later help us with reduction of the prob-
lem.

Due to the evident identity

(α′)2 + (β′)2 + (γ′)2 = 1 (160)

our P 2 depends upon only two directional cosines. Elimination of γ ′ from (157), by means of (160),
trivially yields:

P 2 − 1

I3
=

(
1

I1
− 1

I3

)
(α′)2 +

(
1

I2
− 1

I3

)
(β′)2. (161)

17)The direction cosines can be expressed in terms of the angle l from the ascending node of the equator on the invariable
plane to the the b̂1 body axis, and the angle J between the angular-momentum vector and the b̂3 principal axis of the body
(Fig. 1):

α′ = sin J sin l, β′ = sin J cos l, γ′ = cos J,

so that

I1ω1 = G sin J sin l, I2ω2 = G sin J cos l, I3ω3 = G cos J.
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Note that, if we now introduce a2 and b2 such that

a2 =
P 2 − 1

I3
1
I1

− 1
I3

, (162)

b2 =
P 2 − 1

I3
1
I2

− 1
I3

, (163)

we shall be able to write down the definition of P 2 in a form that will, formally, be identical to definition
of an ellipse:

(α′)2

a2
+

(β′)2

b2
= 1. (164)

This means that, along with P 2, it is convenient to introduce another auxiliary variable, ξ, one that obeys

(α′)2

a2
≡ cos2 ξ,

(β′)2

b2
≡ sin2 ξ. (165)

Insertion of the above into (160) entails

(γ′)2 =
(
1 − a2

)(
1 − b2 − a2

1 − a2
sin2 ξ

)
. (166)

Then, after defining the quantity κ2 and the function ∆ as

κ2 ≡ b2 − a2

1 − a2
(167)

and

∆ξ ≡
√

1 − κ2 sin2 ξ, (168)

we shall be able to cast the direction cosines of the angular-momentum vector in the form of

α′ = a cos ξ, (169)

β′ = b sin ξ, (170)

γ′ =
√

1 − a2∆ξ. (171)

Looking back at (156), we see that initially we started out with three direction cosines, only two of which
were independent due to the equality (160). The latter meant that all these cosines might be expressed
via two independent variables. The quantities P 2 and ξ were cast for the part. (Mind that a and b depend
on P 2 through (162)–(163).) It should also be mentioned that, due to (160), P 2 is a constant of motion,
and therefore formulae (169)–(171) effectively reduce the problem to one variable, ξ, which thereby
plays the role of re-scaled time, in terms whereof the problem is fully solved. Below we shall explicitly
write down the dependence of the “time” ξ upon the real time t or, equivalently, upon the dimensionless
time u ≡ n(t− to) emerging in (61)–(62).

Undisturbed spin of an unsupported rigid body obeys the Euler equations for the principal-axes-
related components of the body angular velocity:

I1
dω1

dt
= ω2ω3(I2 − I3), (172)

I2
dω2

dt
= ω3ω1(I3 − I1), (173)

I3
dω3

dt
= ω1ω2(I1 − I2). (174)
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Insertion of expressions (156) into (172), (173), and (174) provides an equivalent description written
in terms of the angular-momentum vector’s directional cosines relative to the principal axes:

dα′

dt
= Gβ′γ′

(
1

I3
− 1

I2

)
, (175)

dβ′

dt
= Gγ′α′

(
1

I1
− 1

I3

)
, (176)

dγ′

dt
= Gα′β′

(
1

I2
− 1

I1

)
. (177)

Substitution of (169)–(171) into (175) will then entail

dξ

∆ξ
=
b

a

√
1 − a2

(
1

I2
− 1

I3

)
Gdt. (178)

A subsequent insertion of (162)–(163) and (168) into (178) will then entail:

dξ√
1 − κ2 sin2 ξ

= G dt

√(
1

I1
− P 2

)(
1

I2
− 1

I3

)
. (179)

Now define a “mean motion” n as

n ≡ G

√(
1

I1
− P 2

)(
1

I2
− 1

I3

)
, (180)

Since, according to (159), P 2 is integral of motion, then so is n, and therefore
∫ ξ

0

dξ√
1 − κ2 sin2 ξ

=

∫ t

t0

ndt′ = n(t− t0). (181)

This means that, if we define a dimensionless time as

u ≡
∫ t

t0

ndt′ = n(t− t0) (182)

and a function F as

F (ξ, κ) ≡
∫ ξ

0

dξ′√
1 − κ2 sin2 ξ′

, (183)

then the interrelation between the parameter ξ and the time will look like:

u = F (ξ, κ). (184)

This is a Jacobi elliptic equation whose solutions are be written in terms of the following elliptic
functions:

ξ = am(u, κ) ≡ F−1(u, κ), (185)

sin ξ = sn(u, κ) ≡ sin(am(u, κ)), (186)

cos ξ = cn(u, κ) ≡ cos(am(u, κ)), (187)

∆ξ ≡
√

1 − κ2sn2(u, κ) ≡ dn(u, κ). (188)

According to (184), u is a function of ξ and κ. The integral of motion κ is, through (167) and (159),
a function of Tkin andG, while the parameter ξ is, through the medium of (162)–(163) and (169)–(170),
a function of Tkin, G, α′ = sin J sin l, and β ′ = sin J cos l. All in all, u is a function of Tkin, G, J , and l.

It is also possible to express u through another set of geometric variables. Recall that (φ, θ, ψ)

are the Euler angles defining orientation of the body axes (b̂1, b̂2, b̂3) relative to the fiducial
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frame (̂s1, ŝ2, ŝ3), while (φ0, J, l) are the Euler angles defining orientation of the body axes with respect
to the invariable plane, as on Fig. 2. Out of that picture, it is convenient to single out a spherical
triangle whose sides are given by (φ− h, ψ − l, g), and whose internal angles are (I, π − θ, J), as
shown in Fig. 3. An analogue to the law of cosines, for spherical triangles, looks like:

cos I = cos θ cos J + sin θ sin J cos(ψ − l), (189)

which is the same as (148), up to a cyclic transposition. The second term on the right-hand side of (189)
can be expanded as

sin J cos(ψ − l) = sin J (cosψ cos l + sinψ sin l)

= (sinJ sin l) sinψ + (sinJ cos l) cosψ

= α′ sinψ + β
′

cosψ

= a sinψ cos(am(u)) + b cosψ sin(am(u)), (190)

where the last line was obtained with aid of (169)–(170) and (185). Thus (189) acquires the shape of

cos I = cos θ
√

1 − a2∆am(u) + a sin θ sinψ cos(am(u)) + b cosψ sin(am(u)). (191)

We see that u depends upon ψ, θ, cos I, and (through a and b) upon Tkin and G. This is equivalent
to saying that u is a function of Tkin,G, G cos I, θ, ψ.

A.3. Taking Variations of S

Let us start with the expression (58) for the generating function:

S = −tTkin +Gh cos I +Gg +G

∫
cos J dl + C. (192)

We see that it depends upon eight variables, some of which are dependent upon others. In brief,

S = S(t, Tkin, l, L ≡ G cos J, g, G, h, H ≡ G cos I). (193)

Variation thereof, taken at a fixed time t, will look like:

δS =

(
∂S

∂Tkin

)
δTkin +

(
∂S

∂h

)
δh+

(
∂S

∂(G cos I)

)
δ(G cos I)

+

(
∂S

∂G

)
δG+

(
∂S

∂g

)
δg +

(
∂S

∂(G cos J)

)
δ(G cos J) +

(
∂S

∂l

)
δl

= − tδTkin +G cos Iδh+ hδ(G cos I)

+

(
g +

∫
cos Jdl

)
δG+Gδg +G

∫
δ(cos J)dl. (194)

Our goal is to simplify (194), having in mind that the variables emerging there are not all mutually
independent. To that end, let us employ expression (150). Its differentiation would yield the expression

dg − d(φ− h) cos I = − cos Jd (l − ψ) + sin J sin (l − ψ)dθ, (195)

where the Euler angles φ, θ, ψ determine the orientation of the body relative to some inertial reference
frame. If, however, we perform variation of (150), for a fixed orientation of the body relative to the inertial
frame, then we shall get simply δg = − cos Jδl − cos Iδh. Multiplying this by G, we arrive at

Gδg = −G cos Jδl −G cos Iδh, (196)

substitution whereof into (194) entails

δS = −tδTkin + hδ(G cos I) +

(
g +

∫
cos Jdl

)
δG +G

∫
δ(cos J)dl −G cos Jδl. (197)
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Next, we shall recall the formula for the Binet Ellipsoid, expressed through the directional cosines defined
in (159). According to (157) and (159), we have:

(α′)2

I1
+

(β′)2

I2
+

(γ′)2

I3
=

2 Tkin
G2

. (198)

Insertion of the (evident from Fig. 1) relations

α′ = sin J sin l, β ′ = sinJ cos l, γ ′ = cos J,

into the above formula will yield

sin2 J

(
sin2 l

I1
+

cos2 l

I2

)
+

cos2 J

I3
=

2Tkin
G2

, (199)

or, equivalently,

(1 − (γ′)2)

(
sin2l

I1
+
cos2l

I2
− 1

I3

)
=

2Tkin
G2

− 1

I3
. (200)

Differentiation of the above will lead us to

2
dTkin
G2

− 4
TkindG

G3
= −2γ′d(γ′)

(
sin2 l

I1
+

cos2 l

I2
− 1

I3

)
+ 2α′β′

(
1

I1
− 1

I2

)
dl. (201)

If we now turn the differentials into variations, and multiply both sides by G2 dt/2, we shall obtain:
(
δTkin − 2

TkinδG

G

)
dt = −G2 dtγ′δγ′

(
cos2l

(
1

I2
− 1

I1

)
+

(
1

I1
− 1

I3

))

+G2 dtα′β′
(

1

I1
− 1

I2

)
δl. (202)

Consider the second term on the right hand side of (202). We know from (177) that

Gdtα′β′
(

1

I1
− 1

I2

)
= −dγ′, (203)

so we can write the second term on the right hand side of (202) as

G2 dtα′β′
(

1

I1
− 1

I2

)
δl = −Gdγ′δl. (204)

The first term on the right hand side of (202) can be written down as

−G2dtγ′δγ′
[
cos2 l

(
1

I2
− 1

I1

)
+

(
1

I1
− 1

I3

)]

= −G2 dtγ′δγ′
[

(β′)2

1 − (γ′)2

(
1

I2
− 1

I1

)
+

(
1

I1
− 1

I3

)]

= −Gγ′δγ′
(

(β′)2

1 − (γ′)2
dγ′

α′β′
+
dβ′

α′γ′

)

=
−Gδγ′
α′

(
β′γ′

1 − (γ′)2
dγ′ + dβ′

)

=
−Gδγ′

α′(1 − (γ′)2)

(
β′γ′ dγ′ + (1 − (γ′)2) dβ′

)
. (205)

We obtained the first equality by noting that the definitions of the direction cosines yield

cos2 l =
(β′)2

(α′)2 + (β′)2
=

(β′)2

1 − (γ′)2
, (206)
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while the second equality comes from the equations of motion (175)–(177) in Appendix A.2. Finally,
when we look at dβ ′, we see that

dβ′ = d(sin J cos l) = d(
√

1 − (γ′)2 cos l)

= − γ′ dγ′ cos l√
1 − (γ′)2

−
√

1 − (γ′)2 sin l dl = − γ′β′dγ′

1 − (γ′)2
− α′ dl. (207)

We can now write (205) as

−Gδγ′
α′(1 − (γ′)2)

(
β′γ′ dγ′ + (1 − (γ′)2) dβ′

)

=
−Gδγ′

α′(1 − (γ′)2)

(
β′γ′ dγ′ + (1 − (γ′)2)

(
− γ′β′ dγ′

1 − (γ′)2
− α′ dl

))

= Gdlδγ′ = Gδ(cos J) dl. (208)

This enables us to write (202) as
(
δTkin − 2

TkinδG

G

)
dt = Gδ(cos J) dl −Gd(cos J)δl. (209)

Integration of this yields

G

∫
δ(cos J)dl =

(
δTkin − 2

TkinδG

G

)∫
dt+G

∫
δldγ′

=

(
δTkin − 2

Tkin δG

G

)
u

n
+G cos Jδl. (210)

Insertion of this result into (197) brings up the following

δS =
(u
n
− t
)
δTkin + hδ(G cos I) +

(
g +

∫
cos Jdl − 2

Tkin
G

u

n

)
δG. (211)

Finally, getting rid of δG
(∫

cos J dl − 2 (Tkin/G) (u/n)
)

by means of (61), we arrive at the desired
formula (67).

A.4. Proof of Formula (60)
Since we are now talking about unperturbed rotation, the invariable plane is inertial and we can

employ our formulae (5)–(7) for the body-frame-related angular velocity, with angles g, J, l inserted
instead of φ, θ, ψ:

ω1 = ġ sin J sin l + J̇ cos l, (212)

ω2 = ġ sin J cos l − J̇ sin l, (213)

ω3 = l̇ + ġ cos J. (214)

Therefrom we extract two derivatives:

ġ =
1

sin J
(ω1 sin l + ω2 cos l),

l̇ cos J = ω3 cos J − cos2 θ

sin J
(ω1 sin l + ω2 cos l),

summation whereof yields

ġ + l̇ cos J = ω3 cos J +
1 − cos2 J

sinJ
(ω1 sin l + ω2 cos l) = ω3 cos J + sin J (ω1 sin l + ω2 cos l).

This expression, in combination with

I1 ω1 = G sin J sin l, I2 ω2 = G sin J cos l, I3 ω3 = G cos J,

entails (60).
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A.5. Andoyer’s Method

Let (xi, yi) i = 1, . . . , n, be a set of canonical variables, and let the Hamiltonian be some H(xi, yi),
so that

dxi
dt

=
∂H
∂yi

,
dyi
dt

= −∂H
∂xi

. (215)

Let z1, z2, . . . z2n be some new, not necessarily canonical variables. The question raised by Andoyer
was: How will the equations of motion look in these new variables?

Making use of the Lagrange brackets,

[u, v] =
∑

i

(
∂xi
∂u

∂yi
∂v

− ∂yi
∂u

∂xi
∂v

)
,

and taking into account (215), we can write after some algebra:18)

∂H
∂zk

+ [zk, t] +
∑

l

[zk, zl]
dzl
dt

= 0, (216)

a linear system wherefrom the derivatives dzl/dt can be obtained.

At this point, Andoyer introduces a new function Ju given as

Ju =
∂K

∂u
+
∑

i

yi
∂xi
∂u

, (217)

where K is an arbitrary function (later on it will be set zero).

Obviously,

[u, v] =
∂Ju
∂v

− ∂Jv
∂u

. (218)

The linear system (216) may be converted into

∂H′

∂zk
+
∂Jzk

∂t
+
∑

l

(
∂Jzk

∂zl
− ∂Jzl

∂zk

)
dzl
dt

= 0, (219)

with H′ = H− t.

Let us assume now the following hypothesis: the 2n variables zk are split into two parts pj and qj,
(j = 1, . . . n), in such a way that

Jqj = 0, and Jpj
= Jpj

(q1, . . . , qn; t). (220)

Hence, the previous system is split into

∂H′

∂pk
+
∂Jpk

∂t
+
∑

j

∂Jpk

∂qj

dqj
dt

= 0,
∂H′

∂qk
−
∑

j

∂Jpj

∂qk

dpj
dt

= 0. (221)

18)Note that

∂H

∂zk

=
∑

i

(
∂H

∂xi

∂xi

∂zk

+
∂H

∂yi

∂yi

∂zk

)
,

and hence, based on (215),

∂H

∂zk

+
∑

i

(
∂xi

∂zk

dyi

dt
−
∂yi

∂zk

dxi

dt

)
= 0.

REGULAR AND CHAOTIC DYNAMICS Vol. 12 No. 4 2007



THE SERRET–ANDOYER FORMALISM IN RIGID-BODY DYNAMICS: I. 423

Let us now define q∗j = Jpj
, and replace qj with these new variables. Since qj are functions of q∗j and t,

we get:

∂H′

∂qk
=
∑ ∂H′

∂q∗k

∂q∗j
∂qk

, (222)

whence the previous equations acquire the form of

dpj
dt

=
∂H′

∂q∗j
,

dq∗j
dt

= −∂H
′

∂pj
. (223)

This shows that pj are the conjugate momenta of q∗j .

Let us now consider a rigid-body motion. Let φ, θ, ψ be the Euler angles and Φ,Θ,Ψ be their
conjugate moments. If in the definition (217) we set the function K to be zero, we shall obtain:

Jα = Φ
∂φ

∂α
+ Θ

∂θ

∂α
+ Ψ

∂ψ

∂α
, (224)

where α denotes any Euler angle. By definition, a conjugate momentum is a partial derivative of the ki-
netic energy with respect to the time derivative of the corresponding Euler angle. Thus

Jα =
∂φ

∂α

∂T

∂φ̇
+
∂θ

∂α

∂T

∂θ̇
+
∂ψ

∂α

∂T

∂ψ̇
, (225)

which we can rewrite as

Jα = φ̇α
∂T

∂φ̇
+ θ̇α

∂T

∂θ̇
+ ψ̇α

∂T

∂ψ̇
, (226)

where φ̇α, θ̇α, ψ̇α are the virtual angular velocities with respect to α; the virtual motion is an instan-
taneous rotation about the origin, at an angular velocity ωα = (ω1α, ω2α, ω3α). Thus, the relation
between ωα and the derivatives φ̇α, θ̇α, ψ̇α, is the same as the relation between the angular-velocity
vector ω and the derivatives φ̇, θ̇, ψ̇.

The kinetic energy is a quadratic form in the derivatives φ̇, θ̇, ψ̇. So the above expression shows
that Jα is the polar form of the quadratic form T with respect to φ̇α, θ̇α, ψ̇α. Thus, since

2T = I1ω
2
1 + I2ω

2
2 + I2ω

2
3 = G · ω, (227)

we have:

Jα = I1ω1ω1α + I2ω2ω2α + I2ω3ω3α = G · ωα. (228)

Having arrived to this point, Andoyer introduced the invariable plane perpendicular to the angular
momentum vector G, and computed the quantities Jα in terms of the six variables l, g, h, I, G, J
defined as on Fig. 3.

Firstly, JG = 0 because φ, θ, ψ do not depend on G. Next, as vectors ωI and ωJ point in the di-
rections of the nodes on the invariable plane, then JI = G · ωI = 0 and JJ = G · ωJ = 0. On the other
hand, Jg = G · ωg = G, and Jh = G · ωh = G cos I, and also Jl = G · ωJ = G cos J .

Thus, to satisfy the conditions (220) and to get a canonical set of variables, we must choose the new
conjugate momenta as

L = Jl = G cos J, G = Jg, H = Jh = G cos I. (229)
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250.
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