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ABSTRACT
Out-of-the-ecliptic trajectories that are beneÐcial to space observatories such as the Terrestrial Planet

Finder and other potential mid-IR missions are introduced. These novel trajectories result in a signiÐ-
cantly reduced background noise from the zodiacal dust radiation, compared to a 1 AU in-plane orbit.
Three types of trajectories are characterized using genetic algorithms. Based on the characterization
process, two optimal highly inclined non-Keplerian trajectories that are energetically feasible are derived.
The energy requirements to reach these trajectories are respectively half as much and equivalent to a
direct trip to 5 AU with no planetary gravitational assists. We use the zodiacal dust model from the
COBE data to determine how well the optimal trajectories mitigate the interference from the zodiacal
dust. The Ðrst optimal trajectory can use existing launch technology and yields a maximum decrease of
67% in the zodiacal cloud brightness. The zodiacal brightness for this trajectory is reduced by at least
50% for 60% of the mission lifetime. The second optimal trajectory requires planned improvement in
launch technology, but it renders a dramatic 97% maximum noise decrease. The zodiacal cloud bright-
ness is reduced by at least 70% for 82% of the mission lifetime for this trajectory.
Subject headings : infrared : general È space vehicles È space vehicles : instruments

1. INTRODUCTION

An unprecedented interest in space-borne observation
missions has arisen out of NASAÏs Origins Program, a col-
lection of missions aimed at determining and characterizing
the origin and development of galaxies, stars, planets, and
the chemical conditions necessary to support extraterres-
trial life.4 Over the course of the next 2 decades, the Origins
Program will focus on developing space-based observa-
tories through a series of precursor missions such as the
Space Infrared Telescope Facility (SIRT F ) ; Ðrst-generation
missions such as Space Technology 3 (ST 3), the Space Inter-
ferometry Mission (SIM), and the Next Generation Space
Telescope (NGST ) ; and second-generation missions such as
the Terrestrial Planet Finder (T PF ).

One of the most important constraints of such missions is
the so-called zodiacal dust (zodi) or interplanetary dust. In
our own solar system, dust (very tiny solid particles com-
posed of silicates, ices, and other minerals) is ever present.
This material is both a remnant of the formation of the
planets and a consequence of continuing collisions among
comets, asteroids, and other small bodies. The zodi has a
potentially serious impact on the ability of space-borne
observatories to detect and study their targets. SpeciÐcally,
the zodi reveals itself as a di†use component of the sky
brightness, attributed to the scattering of sunlight in the
UV, optical, and near-IR, and the thermal reradiation of
absorbed energy in the mid-IR and far-IR. At infrared
wavelengths from approximately 1 km, the signal from the
zodi is a major contributor to the di†use sky brightness and
dominates the mid-IR (10È60 km) sky in nearly all direc-
tions (except for very low Galactic latitudes). Consequently,
the emission from the local zodi is a major noise source,
considerably a†ecting the size and weight requirements of

1 Department of Mechanical and Aerospace Engineering, Princeton
University, Princeton, NJ 08544.

2 Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540.
3 Department of Physics, Cavendish Laboratory, Madingley Road,

Cambridge University, Cambridge CB3 0HE, UK.
4 Available at http ://origins.jpl.nasa.gov.

the mirrors of space-borne observatories. Beichman, Woolf,
& Lindensmith (1999) show that for a 1 AU T PF mid-IR
interferometer mission, the local zodiacal background con-
stitutes roughly 70% of the total noise. The intensity of the
zodi radiation (in terms of thermal emission) is greatly
reduced when moving in a direction normal to the ecliptic
plane.

The zodi problem is the principal motivation for the
design of trajectories having considerable displacements
normal to the ecliptic. We have examined a widely used
zodi model that was measured by the Cosmic Background
Explorer (COBE) and the Infrared Astronomical Satellite
(IRAS ; Kelsall et al. 1998). Simulation of this model quan-
tiÐes the evolution of the zodi brightness (from thermal
emission only) as a function of the height above the ecliptic
plane, at various Earth positions. The results are depicted in
Figure 1, with j denoting EarthÏs angular position relative
to the Sun. It is apparent that at 0.18 AU above the ecliptic
plane, more than 50% of the emission is avoided, and at 0.4
AU above the ecliptic, more than 80% of the emission is
avoided. While higher excursions further reduce the noise
generated by the zodi emission, the energetic requirements
involved may be substantial. In other words, the 0.4 AU
point on the abscissa of Figure 1 represents a threshold
above which the dependence of the normalized brightness
on the height above the ecliptic plane is small when com-
pared to the energy cost to get there.

A variety of orbits have been considered for other mis-
sions. The diversity of these missions and their stringent
resolution and accuracy requirements necessitate the design
of specialized trajectories. For example, for the NGST
mission, a halo orbit around the colinear Lagrangian libra-
tion point has been considered.5 For the T PF and Darwin
missions, orbits at 5 AU where the zodi is highly reduced
are being considered (Landgraf & Jehn 2001), but cost,
communication, power, and delay to data return can be
problematic. For the T PF mission, both and helio-L2centric Earth-trailing orbits have also been examined
(Beichman et al. 1999). To date, several types of trajectories

5 Available at http ://icarus.stsci.edu/Dlubow/ngst/orbits.html.
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FIG. 1.ÈVariation of the brightness of the local interplanetary dust
cloud (thermal emission only) as viewed from Earth along the line of sight
normal to the ecliptic plane (j, the heliocentric longitude) at the four
di†erent Earth positions indicated in Fig. 2.

associated with the colinear libration points have been
reported. These trajectories are obtained by exploring either
the planar circular restricted three-body problem (CR3BP)
or the spatial CR3BP. The so-called Lyapunov orbits
obtained in the planar case (Szebehely 1967) bifurcate into a
spatial family of Lissajous orbits (Gomez, Massdemont, &
Simo 1997), which generate the well-known Halo orbits as a
particular case only when perturbations are ignored and
speciÐc initial conditions are selected (Howell, Barden, &
Lo 1997 ; Henon 1974 ; Goudas 1963). While libration-point
orbits have been widely explored (as they often o†er valu-
able operational and scientiÐc features), less attention has
been given to other trajectories emerging from the spatial
CR3BP that are more suitable for the unique constraints of
mid-IR space-borne observation missions.

This paper describes work aimed at synthesizing families
of out-of-the-ecliptic trajectories, which mitigate the e†ects
of the zodi. Section 2 discusses the zodi model, ° 3 describes
the optimal trajectories, and ° 4 follows with a summary
and discussion.

2. THE LOCAL ZODIACAL CLOUD MODEL

A parameterized physical model of the zodi was used to
evaluate the e†ectiveness of the orbits described in this
paper. This model is a simpliÐed version of the highly
complex model developed in direct conjunction with the
measurements from the COBE DIRBE satellite (Kelsall et
al. 1998).

As the following equation and discussion demonstrate,
the model brightness is calculated as the integral of the
product of a source function and a three-dimensional dust
density distribution function evaluated along the line of
sight :

Il \
P

E
c,l Bl(T (R))n

c
(X, Y , Z) ds . (1)

At infrared wavelengths of approximately 10È60 km,
thermal reradiation of absorbed energy from the zodi is
estimated to contribute 90% or more to the total sky
brightness in nearly all directions (except at very low Galac-

tic latitudes). In contrast, the scattered sunlight contribu-
tion is of signiÐcance in the UV, optical, and near-IR.
Therefore, as a Ðrst approximation, it can be neglected in
the case of an observing mission centered at a 12 km wave-
length. The simpliÐed model thus considers the thermal
emission contribution of the zodi, which is expressed in
equation (1) as a blackbody and its associatedBl(T (R))
emissivity modiÐcation factor at 12 km (initially a freeE

c,lparameter in the original DIRBE model), which is
The dust-grain temperature T variationE

c,12 km\ 0.958.
with distance from the Sun is given by whereT (r)\ T0R~d,
d \ 0.467. The three-dimensional dust density distribution

is composed of several structured components :n
c
(X, Y , Z)

a smooth cloud, three asteroidal dust bands, and a circum-
solar ring at 1 AU. At a wavelength of 12 km, the DIRBE
instrument (Kelsall et al. 1998) measured the zodi com-
ponents of the smooth cloud, dust bands, and circumsolar
ring as 28.476, 1.938, and 3.324 MJy sr~1, respectively. The
simpliÐed model adopted in this paper neglects the contri-
bution to the zodi brightness of the dust bands and circum-
solar ring.

Because of the relatively small inclination of the midplane
of the smooth cloud distribution, the zodiacal light is the
only component of the sky brightness that is not Ðxed on
the celestial sphere. This important and unique feature,
depicted in Figure 2, results in the temporal variation of
zodi brightness observed in a given celestial direction by an
Earth-based observer. The model calculations for a space-
craft are performed in heliocentric ecliptic coordinates (X,
Y , Z), where s, and j represent respectively the heightR

^
,

above Earth, the Earth-Sun distance (1 AU), and the helio-
centric longitude of Earth :

X \ R
^

cos j , (2)

Y \ R
^

sin j , (3)

Z\ s . (4)

The center of the smooth cloud is o†set from the Sun by
and the resulting translated cloud coordinates(X0, Y0, Z0),are

X@\ X [ X0 , (5)

Y @\ Y [ Y0 , (6)

Z@\ Z[ Z0 , (7)

R
c
\ JX@2] Y @2] Z@2 . (8)

The vertical structure of the smooth dust cloud is deter-
mined by the height of its inclined symmetric midplane,

Z
c
\ X@ sin ) sin i[ Y @ cos ) sin i] Z@ cos i , (9)

where i and ) are the inclination and ascending node of the
midplane, respectively.

The density of the smooth cloud is separable into radial
and vertical terms,
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FIG. 2.ÈInclination of the symmetric zodi cloud with respect to the Sun-Earth ecliptic plane. A, B, C, and D correspond to the positions of the line of sight
(j \ 0, n/2, n,3n/2) shown in Fig. 1.

Following the same procedure as the DIRBE model, inte-
gration along the line of sight was performed from the satel-
lite to an outer radial cuto† of 5.2 AU from the Sun. A
particular line of sight is deÐned by two angles, the project-
ed angle in the ecliptic plane and the angle from the ecliptic.
To evaluate the zodi at a particular point along the orbit, a
single angle from the ecliptic (usually 30¡) was used, and the
zodi brightness was averaged over 360¡ of the projected
angle ; these numbers were then normalized to range from 0
to 1.

3. TRAJECTORIES

3.1. T he Equations of Motion
A vast amount of literature exists on the CR3BP (e.g.,

Gomez, Masdemont, & Simo 1998 ; Gomez et al. 1997 ;
Howell et al. 1997 ; Marchal 1990 ; Szebehely 1967, and ref-
erences therein). In almost all past research, the standard
rotating coordinate system has been used with the origin set
at the barycenter of the large primary and the smallm1primary The x-axis is positive in the direction of them2. m2,z-axis is perpendicular to the plane of rotation and is posi-
tive when pointing upward, and the y-axis completes the set
to yield a right-hand reference frame. Normalization is per-
formed by setting and where k \m2\k m1\ 1 [ k,

Thus, is located at (k, 0, 0) and ism2/(m1] m2). m1 m2located at (k [ 1, 0, 0). Usually, this coordinate system is
sufficient to model the problem and yields a fruitful charac-
terization of diverse families of trajectories. However, in this
study we have adopted a slightly di†erent rotating coordi-
nate system, which we found to be particularly useful for
characterization of trajectories that reduce the zodi inter-
ference. The basic notion is to choose the origin of the
coordinate system at the center of the small primary, Earth
in our case, rather than the barycenter, and to normalize the
masses by the mass of the large primary, the Sun in our case.
This coordinate system was Ðrst used by Rabe (1961) and

later by Breakwell (1963) in their approximate analyses of
three-dimensional trajectories.

Following the usual analysis, but in this variant coordi-
nate system, let r denote the position vector of the vehicle
relative to Earth and R that of Earth relative to the Sun.
The acceleration of the spacecraft relative to Earth is given
by Breakwell (1963),

r� \ [ kE r
r3 [

CkS(R ] r)
o R ] r o3 [ kS R

R3
D

, (12)

where is the gravitational constant of Earth and is thekE kSgravitational constant of the Sun.
The acceleration is evaluated in a rotating Earth-Ðxedr�

coordinate system as depicted in Figure 3. This local verti-
cal reference frame originates at the center of Earth, with
the x-axis directed radially outward along the local vertical,
the y-axis lying along the direction of EarthÏs motion, and
the z-axis normal to the ecliptic to complete the Cartesian
right-hand setup.

We use the following unit convention : the position of
the vehicle is measured in astronomical units (AU), where
the mean Earth-Sun distance, assumed constant, is
o R o\ R\ 1 AU \ 1.496 ] 108 km. The time unit is nor-
malized by EarthÏs mean heliocentric angular velocity, i.e.,

with t* as the time measured in seconds.t \ t*/(R3/kS)1@2Accordingly, the velocity vector of the vehicle ¿\ [x5 , y5 , z5 ]T
is normalized by Also, letR/(R3/kS)1@2. k \ kE/kS.The inertial frame used here, denoted by (X, Y , Z), is a
heliocentric-ecliptic coordinate system, as depicted in
Figure 3. By utilizing the above unit convention, the trans-
formation from the rotating frame to the inertial frame can
be found :
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FIG. 3.ÈDeÐnition of coordinate systems

Also, we deÐne a pseudopotential function

)(x, y, z)\ 1
2

(x2] y2)]k
r
] 1

o
] x , (14)

where

r \ Jx2] y2] z2 (15)

is the distance from Earth, and

o \ J(x ] 1)2] y2] z2 (16)

is the distance from the Sun.
To proceed, we assume that the vehicle performs a ballis-

tic motion, i.e., no control forces are used, and that the
motion of the vehicle is undisturbed by other gravitational
sources and the solar radiation pressure. Computing the
well-known expression for acceleration in a rotating coordi-
nate frame yields the following equations of motion,

x� [ 2y5 \ )
x

, (17)

y� ] 2x5 \ )
y

, (18)

z� \ )
z
, (19)

where the subscript stands for partial di†erentiation. Substi-
tuting from equation (14), equations (17)È(19) can be equiv-
alently written as

x� [ x [ 2y5 \ [ kx
(x2] y2] z2)3@2

[ (1 ] x)
[(x ] 1)2] y2] z2]3@2 ] 1 , (20)

y� [ y ] 2x5 \ [ ky
(x2] y2] z2)3@2

[ y
[(x ] 1)2] y2] z2]3@2 , (21)

z� \ [ kz
(x2] y2] z2)3@2

[ z
[(x ] 1)2] y2] z2]3@2 , (22)

or, in state-space vector form,

x5 \ f (x) , (23)

where

x 4 [x, x5 , y, y5 , z, z5 ]T . (24)

Multiplying equations (20)È(22) by and respectively,x5 , y5 , z5 ,
adding the results, and performing the integration renders
the integral of motion, the well-known Jacobi constant,
given by

C\ )(x, y, z)[ 12(x5 2] y5 2] z5 2) . (25)

Note that for any given initial conditions, the di†erential
equations (20)È(22) are equivariant under the following
transformations :

(x, y, z, t)] (x,[ y, z,[ t) or (x,[ y,[ z,[ t) . (26)

Hence, symmetries exist only for a backward integration of
the equations of motion. However, various symmetries exist
for di†erent sets of initial conditions. An obvious symmetry
that occurs in the x-z plane is

x(t, (x0)1)\ x(t, (x0)2), y(t, (x0)1)\ y(t, (x0)2) ,

z(t, (x0)1)\ [z(t, (x0)2) , (27)

where

(x0)1 \ [x0, x5 0 , y0, y5 0 , z0, z5 0 ]T ,

(x0)2 \ [x0, x5 0 , y0, y5 0 , [ z0,[ z5 0 ]T . (28)

Other symmetries that may exist as functions of initial con-
ditions are much less obvious, because of the rotation of the
coordinate system. The next section describes some stability
considerations that pave the way to synthesizing the con-
straints for the trajectory optimization procedure.

3.2. Practical Stability
One of the most important aspects of designing a trajec-

tory is to deÐne, study, and characterize its stability. Since
stability is a matter of deÐnition, one has to use an appro-
priate stability framework that is suitable to the speciÐc
dynamical system involved. We have found that the so-
called practical-stability theory renders a good means for
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quantifying our analysis and design of the CR3BP
trajectories.

For given initial conditions, a trajectory is said to be
practically stable if for i.e., if ther ¹b \ rmax t ½ [t1, t2],vehicle has not gone beyond some prespeciÐed distance
from Earth in a given time interval. This stability deÐnition
is used to constrain the genetic algorithm optimization pro-
cedure (see ° 3.3 below). It reÑects operational consider-
ations, since at long distances from Earth, communication
becomes too costly.

Regions of practically stable motion for the spatial
CR3BP can be semianalytically determined by examining
the curves of zero velocity, also known as HillÏs regions.
These curves are generated by plotting equipotential con-
tours of the function in equation (14), or equivalently, plot-
ting the position of the vehicle for di†erent values of the
Jacobi constant evaluated along The per-x5 \ y5 \ z5 \ 0.
missible regions of the vehicle motion are conÐned by di†er-
ent values of C. For the three-dimensional case discussed
here, sufficiency conditions for practically stable motion can
be determined as follows (Szebehely 1967) : let C(L1,0)
denote the Jacobi constant for the Sun-Earth system evalu-
ated along the zero-velocity curve that intersects the
Lagrangian equilibrium point IfL1.

C[ C(L1,0) \ 1.0004513 , (29)

then the zones of possible motion of the vehicle are divided
into three disconnected parts : near Earth, near the Sun, or
far away from both. The Ðrst two regions are practically
stable and are known as Hill-stable regions (Marchal 1990).
To distinguish between the practically stable regions and
the third (not necessarily practically stable) region, we
notice that the vehicle can drift away from the primaries
only if the gradient of its potential function is positive.
Hence, if equation (29) holds, and in addition

+)(x, y, z)\ 0 , (30)

a practically stable motion results.
Unfortunately, in order to satisfy both equations (29) and

(30), one has to choose impractical initial conditions, since,
generally speaking, orbits around Earth have a small
normal-motion magnitude and trajectories that start near
the Sun, which potentially have large normal deÑections,
can impose undesirable practical constraints on the
mission. Instead, we look for di†erent values of C that also
result in practically stable trajectories (recall that the condi-
tions above for stability are sufficient but not necessary).
The basic requirement is to Ðnd initial conditions that lie
within a reasonable distance from Earth, but shift the
vehicle to some (possibly) heliocentric orbit inclined to the
ecliptic with the least possible energy. This task is fulÐlled in
the next section.

3.3. Optimal Trajectories
The discussion in the previous section stresses the com-

plexity and counterintuitive nature of solutions to the
spatial CR3BP. We used a genetic algorithm (GA), speciÐ-
cally the deterministic crowding GA (S. W. Mahfoud 1995,
private communication),6 to optimize the trajectories. This
method is preferable over other optimization algorithms

6 See laboratory report 95001 at http ://www-illigal.ge.uiuc.edu/
index.php3.

such as the gradient search and the simplex method because
it avoids local minima (i.e., the search is performed over the
entire state space) and promotes diversity of solutions. We
emphasize that the use of a GA to optimize trajectories in
the context of the CR3BP is a new idea, and this paper
presents the Ðrst implementation of it. GurÐl & Kasdin
(2001) give the complete details on the GA optimization
mechanism.

We wish to maximize the normal displacement subject to
the following :

1. The di†erential equations of motion.
2. The practical stability constraint : the vehicle should

not exceed a given distance from Earth during a given time
interval.

3. The initial position vector lying outside EarthÏs sphere
but inside some predetermined radius.

4. The initial velocity vector not exceeding some prespe-
ciÐed limit, derived from the overall propellant mass and
capability of the launch vehicle.

See GurÐl & Kasdin (2001) for the GA parameters used
for the trajectory optimizations. The trajectory search pro-
cedure is divided into two conceptual stages : character-
ization and design. The purpose of the characterization is to
obtain an astrodynamic database of types of trajectories
having large out-of-the-ecliptic displacements while using
loose search limits (that is, large allowable initial distance
from Earth and large launch energy). In the design stage we
tighten the optimization constraints (namely, reduced
maximum allowable initial distance from Earth and
maximum launch energy). The resulting design trajectories
can then be categorized based on the trajectory type data-
base obtained from the characterization phase.

3.4. Trajectory Characterization
Eight optimization sets were carried out with di†erent

upper and lower bounds on the initial conditions and the
maximum permissible distance from Earth (see GurÐl &
Kasdin 2001). In order to visualize the trajectories obtained,
the trajectory with the highest Ðtness in the last generation
is selected as the optimal solution. The timescale selected for
visualization purposes is 15 yr (larger than the 5 yr time-
scale selected in the optimization itself).

The top-left panel in Figure 4 depicts the three-
dimensional trajectory that results from the one of the opti-
mization sets. In this case the GA generates a quasi-periodic
Lissajous trajectory that spirals above the ecliptic plane. In
other words, if denotes the frequency of the verticalu

zmotion and and denote characteristic frequencies ofu
x

u
ythe radial and transverse motions, respectively, then this

trajectory satisÐes

u
z
\ u

x
B u

y
, (31)

which results in a large fraction of the orbit being above the
ecliptic. Trajectories satisfying equation (31) are categorized
as type I trajectories. The main deÐciency of type I trajec-
tories is their considerable distance from Earth. Note also
that the solution depicted in the top-left panel of Figure 4 is
asymmetric relative to the ecliptic plane, since most of the
time the vehicle remains above the ecliptic. However, due to
the symmetry property in equation (27), a mirror image of
the trajectory relative to the ecliptic can easily be generated.
This is true for all the trajectories considered.
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FIG. 4.ÈType I, II, and III trajectories resulting from the characterization process shown in an Earth-Ðxed rotating coordinate system

The top-right panel in Figure 4 depicts the three-
dimensional trajectory that results from another opti-
mization set. In this case the GA also generates a
quasi-periodic Lissajous trajectory. However, here the tra-
jectory satisÐes7

u
z
[ u

x
B u

y
, (32)

which results in frequent vertical crossings of the ecliptic
while maintaining a reasonable distance from Earth. Trajec-
tories satisfying equation (32) are categorized as type II
trajectories. The main deÐciency of type II trajectories is
that frequent ecliptic crossing reduces the overall duration
above a certain height. As with type I, the vertical crossing
is asymmetric.

A third type of trajectory, shown in the bottom-left panel
of Figure 4, was spotted when performing the character-
ization on yet a third optimization set. It satisÐes the
condition

u
z
B u

x
B u

y
. (33)

Thus, the trajectory is actually a quasi-periodic Lissajous
trajectory as well, but it is almost closed in three dimensions

7 In this case, and denote the frequencies of the dominant harmo-u
x

u
ynics.

because of equation (33), as illustrated by the bottom-left
panel of Figure 4.

A further examination shows that the other optimization
sets produce type I, II, and III trajectories as well. Generally
speaking, reducing the practical stability limit reduces the
frequency of the in-plane motion while keeping the fre-
quency of the vertical motion almost unchanged. Reducing
the initial velocity limit reduces the amplitude of both the
vertical and the in-plane motion. The next step is to narrow
the search space in order to design practical operational
trajectories for space-borne observation missions. This step
is carried out using GAs as well.

3.5. Trajectory Design : L ow-Energy Optimal Trajectory
The design procedure is di†erent from the character-

ization process, as the constraints of the problem are deter-
mined based on engineering considerations. We use the
database of trajectory types obtained from the character-
ization process, yet we reoptimize the trajectories based on
concrete engineering limitations ; the major limitation is the
maximum energy available from the launcher for vehicle
injection. We used twice the energy per unit mass required
to inject a vehicle into an Earth-departure hyperbola start-
ing from a circular orbit of radius as our design con-r0straint (this measure is known as C3).
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To simplify the discussion, we describe only the Ðrst stage
of the iterative design procedure. To this end, we choose to
start from a 200 km parking orbit, i.e., km.(r0)max\ 6578
Next, an estimate of the mass should be made. We choose
the benchmark value 4000 kg, which is roughly the esti-
mated mass of the current T PF conÐguration (Beichman et
al. 1999). Using charts of lift capabilities versus C3 for
various launchers, it was found that the Atlas ARS or the
Delta IV could provide a C3 of approximately 40, given this
mass. This C3 is smaller than the C3 required for the gener-
ation of orbits normal to the ecliptic using planetary Ñybys
(Buglia 1973) or direct injection (Renard 1970). Conse-
quently, assuming C3 \ 40 km2 s~2 and km,(r0)max \ 6578
the maximal allowable initial velocity is km(v0)max\ 12.7
s~1. Also, we let AU.rmax \ 2

Using the constraints mentioned, the GA was used to
generate a population of optimal trajectories. The last gen-
eration of the GA optimization comprises several solutions,
but two dominant solutions stand out (because of the sym-
metry property). Because the midplane of the zodiacal cloud
is inclined to the ecliptic, with the ascending node at2¡.03

going above the ecliptic renders slightly better77¡.7,
reduction in zodi noise than going below the ecliptic.
Hence, the initial conditions giving a positive normal dis-
placement were chosen.

The optimization procedure will always pick and C3v0to lie on the constraint surface. Thus, properties of the low-
energy optimal trajectories are as follows : km s~1,v0\ 12.7

C3 \ 40 km2 s~2, and accordingly, *l\ 4.9 km s~1. The
trajectory starts from a 200 km parking orbit. The
maximum normal deÑection above the ecliptic is 0.223 AU
with a maximum distance of 2 AU from Earth. Examining
this optimal trajectory in the inertial reference frame from
equation (13) reveals that it is non-Keplerian. By non-
Keplerian we mean that Earth exerts a gravitational force
on the spacecraft that perturbs the motion from the ideal
heliocentric case. The repeated Earth encounters cause the
trajectory to be diverted a few hundreds of thousands of
kilometers away from the Keplerian heliocentric orbit. The
distance from the Sun satisÐes 0.984 ¹ o ¹ 1.124, for a
mission lifetime of 5 yr. The latter property is most impor-
tant when considering solar arrays and power management
for the mission, since it implies that modest-sized solar
arrays can be used. Comparing the frequencies of the in-
plane motion with the frequency of the normal motion clas-
siÐes this trajectory as type II.

Figure 5 depicts the normal, transverse, and radial dis-
placements in the rotating Earth-Ðxed coordinate system
and the distance from Earth for a 5 yr mission for the
low-energy optimal trajectory. The three-dimensional tra-
jectory is presented as well. Because of the limited timescale,
it seems as though the trajectory drifts away from Earth ;
however, the transverse and radial displacements are
periodic, having very slow frequencies relative to the fre-
quency of the normal motion ; hence, a type II trajectory
results.

FIG. 5.ÈTime histories of the displacement components, the three-dimensional trajectory, and the distance from Earth for the low-energy optimal
trajectory.
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In order to estimate how much the proposed trajectory
reduces the zodi noise, we used the zodi model described in
° 2 and incorporated it into the integration of the di†eren-
tial equations (20)È(22) using an appropriate coordinate
transformation. Figure 6 describes the time history of the
normalized zodiacal dust brightness for observation angles
of 30¡È90¡ relative to the ecliptic along the low-energy
optimal trajectory. First, note the periodic behavior
resulting from the periodic normal displacement ; in fact,
these two variables are coherent. Second, for a positive
normal displacement, the reduction in zodi brightness is 5%
higher than for negative normal displacement. The
maximum reduction in brightness is 67%. Averaging the
values over time yields a mean reduction of 45%. Practi-
cally speaking, during 60% of the mission lifetime, the zodi
brightness is reduced by more than 50%. This allows for a
considerable reduction in mirror size, permits faster data
integration times, and allows the collection of more obser-
vations for a given mission lifetime. Figure 7 shows a plot of
the trajectory in heliocentric coordinates, in which the
intensity of the plot represents the normalized zodi bright-
ness. Figure 8 is the cumulative brightness distribution for
this trajectory. This represents the percentage of the mission
lifetime for which the normalized zodi brightness is below a
certain value.

FIG. 6.ÈTime history of the normalized zodi brightness for observation
angles of 30¡È90¡ relative to the ecliptic along the low-energy optimal
trajectory. The maximum reduction in brightness is 67%. The spacecraft
would observe the sky away from the ecliptic plane ; when the spacecraft
crossed the ecliptic plane, it would turn over.

FIG. 7.ÈNormalized average zodi brightness for the low-energy trajectory, shown in inertial heliocentric-ecliptic coordinates with the position of the Sun
indicated by ““x.ÏÏ A, B, C, and D indicate the position along the trajectory at 6, 12, 18, and 24 months, respectively. The dashed line represents EarthÏs
trajectory, with the position of Earth at 0 and 6 months indicated by the X and O symbols, respectively.
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FIG. 8.ÈCumulative brightness distribution for the low-energy orbit.
The Ðgure presents the percentage of the mission lifetime for which the
normalized zodi brightness is below a given value.

Using the methodology proposed by Beichman et al.
(1999) for the calculation of mirror diameter, we have found
that for the T PF IR interferometer, the noise decrease
allows a reduction of 20% in mirror diameter, which yields
up to a 35% reduction in payload mass. This reduction is

FIG. 10.ÈTime history of the normalized zodi brightness for obser-
vation angles of 30¡È90¡ relative to the ecliptic along the high-energy
optimal trajectory. Note the dramatic maximum reduction of 97% in
brightness. During 82% of the mission lifetime, the zodi brightness is
reduced by more than 70%. The spacecraft would observe the sky away
from the ecliptic plane ; when the spacecraft crossed the ecliptic plane, it
would turn over.

not included in the optimization. Iteration on the opti-
mization scheme would result in a reduced energy require-
ment for this reduced mass and perhaps a higher normal
displacement.

FIG. 9.ÈTime histories of the displacement components, the three-dimensional trajectory, and the distance from Earth for the high-energy optimal
trajectory.
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FIG. 11.ÈNormalized average zodi brightness for the high-energy trajectory, shown in inertial heliocentric-ecliptic coordinates with the position of the
Sun indicated by ““ x.ÏÏ A, B, C, and D indicate the position along the trajectory at 6, 12, 18, and 24 months, respectively. The dashed line represents EarthÏs
trajectory, with the position of Earth at 0 and 6 months indicated by the X and O symbols, respectively.

FIG. 12.ÈCumulative brightness distribution for the high-energy orbit.
The Ðgure presents the percentage of the mission lifetime for which the
normalized zodi brightness is below a given value.

3.6. Trajectory Design : High-Energy Optimal Trajectory
The previous section described an optimal trajectory that

emerges from a 200 km parking orbit. The constraints
AU and km s~1 resulted in a type IIrmax ¹ 2 (v0)max \ 12.7

trajectory that yielded a signiÐcant reduction in the zodi
brightness. The purpose of this section is to present a di†er-
ent optimal trajectory, which was obtained using other con-
straints. These constraints represent the maximum lift
capability of existing launch vehicles and may even exceed
them to some extent. Nevertheless, we have chosen to
present this high-energy optimal trajectory because we
believe that the energetic requirements for its implementa-
tion can be achieved by a future launch vehicle such as the
Evolved Expendable L aunch Vehicle or possibly via a com-
bination of low-thrust electric propulsion and impulsive
velocity changes. The principal merit of this trajectory is the
outstanding reduction in zodi noise for most of the mission
lifetime.

In this new trajectory, we have chosen to start from a
36,000 km geosynchronous orbit, i.e., km.(r0)max\ 42,378
Anticipating that the reduction in zodi noise allows the
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TABLE 1

PROPERTIES OF THE OPTIMAL TRAJECTORIES

Low-Energy High-Energy
Property Trajectory Trajectory

Maximum displacement above ecliptic (AU) . . . . . . . . . . 0.223 0.374
Maximum zodiacal reduction (%) . . . . . . . . . . . . . . . . . . . . . . 67 97
Fraction of mission/reduction in brightness (%) . . . . . . 60/50 82/70
Mirror diameter reduction (%) . . . . . . . . . . . . . . . . . . . . . . . . . 20 35
Mass reduction (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [35 [50
Mean distance from Sun (AU) . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.6
Drift from Earth (AU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3

mass to be reduced by half,8 we use a 2000 kg payload. With
this mass, we choose C3 \ 95 km2 s~2, which exceedsÈbut
not by muchÈthe lift capability of the Atlas ARS. This
dictates the constraint Also, we let AU.(v0)max. rmax\ 3
Again, the GA optimizer was used to synthesize an optimal
trajectory.

Properties of the optimal trajectory are as follows : the
trajectory starts from a 36,000 km orbit. The maximum
normal deÑection above the ecliptic is 0.374 AU with a
maximum distance of 3 AU from Earth. As in the previous
case, the resulting optimal trajectory drifts away from Earth
for a given mission lifetime of 5 yr. It is a non-Keplerian
orbit satisfying 0.958 ¹ o ¹ 2.274. Comparing the fre-
quencies of the in-plane motion with the frequency of the
normal motion classiÐes this trajectory as type III.

Figure 9 shows some of the extraordinary features of the
optimal trajectory. This Ðgure depicts the normal, trans-
verse, and radial displacements in the rotating Earth-Ðxed
coordinate system, the three-dimensional trajectory, and
the distance from Earth for a 5 yr mission. Note that the
minimum approach to Earth is 0.2 AU and is obtained after
802 days (approximately 2.2 yr). The relatively close
approach (0.2 AU) means that the orbit might be able to be
perturbed to come close enough to Earth for replenishment
or maintenance. Thus, this type III trajectory o†ers some-
what of an advantage over the previously discussed optimal
type II trajectory. This specialized feature is typical of type
III trajectories.

Similar to the treatment in the previous section, we used
the zodi model described in ° 2 to estimate the reduction in
zodi brightness. Figure 10 describes the normalized zodi
brightness as a function of time. The results are dramatic :
the maximum reduction in brightness is 97%. Averaging the
values over time yields a mean reduction of 75%. During
82% of the mission lifetime, the zodi brightness is reduced
by more than 70%. Figure 11 shows a plot of the trajectory
in heliocentric coordinates ; the intensity of the plot rep-
resents the normalized zodi brightness. Note that unlike in
Figure 7, the zodi brightness is asymmetric ; this is because
one of the ecliptic crossings is farther away from the Sun
than the other, so the zodi brightness is lower. Figure 12 is
the cumulative brightness distribution for this trajectory.
This represents the percentage of the mission lifetime for
which the normalized zodi brightness is below a certain
value. The zodi reduction for this orbit allows for a con-
siderable reduction in telescope mirror size, which not only

8 This is the maximum mass reduction possible for TPF. It is obtained
when the zodiacal noise is completely eliminated. Other noise sources,
however, prevent further mirror size and mass reduction (Beichman et al.
1999).

results in a remarkable reduction in mass, but moreover,
can signiÐcantly reduce the development and manufac-
turing costs.

Using the methodology proposed by Beichman et al.
(1999) for the calculation of mirror diameter, we have found
that for the T PF IR interferometer, the noise reduction due
to the high-energy trajectory allows a reduction of 36% in
mirror diameter, which yields up to a 50% reduction in
payload mass. The properties of the low-energy and high-
energy optimal trajectories are summarized in Table 1. This
table describes the maximum displacement above the eclip-
tic, the maximum reduction in zodi brightness, the fraction
of mission with the concomitant brightness reduction, the
mass reduction, the mean distance from the Sun, and the
maximum drift from Earth during the 5 yr mission lifetime.

4. SUMMARY AND DISCUSSION

The zodi is a signiÐcant problem for mid-IR missions
such as T PF because of its strong thermal emission. While
this emission can be mitigated by a mission orbit at 5 AU
from the Sun (as proposed by Landgraf & Jehn 2001), the
associated design aspects render such an orbit infeasible,
even though the zodi is considerably reduced. For a Ðnite
mission lifetime, the overall scientiÐc return is dramatically
reduced because of the time required to get to a 5 AU orbit.
Moreover, these trajectories require very large solar arrays
and massive communication antennas. Also, in case of a
failure, it is practically impossible to replace the damaged
components or to perform other replenishment missions.
Note also that going a unit distance above the ecliptic
decreases the zodi intensity considerably more than going a
unit distance from the Sun within the ecliptic. This was the
motivation for the study of out-of-the-ecliptic trajectories
for space-borne observatories presented in this work. We
have used genetic algorithms as the parameter optimization
procedure, which has resulted in a fruitful probing of the
complex dynamics of the restricted problem. For example,
the farthest that either of our design trajectories reaches
from the Sun is 2.2 AU within a 5 yr mission lifetime, which
means that an order of magnitude smaller solar arrays can
be used than for a mission at 5 AU. Also, data collection
and scientiÐc interpretation can begin right away, instead of
having to wait several years. A direct trip to 5 AU requires a
C3 of 80 km2 s~2 (Meissinger, Wertz, & Dawson 1997),9
equivalent to our high-energy trajectory, and a travel time
of 2 yr. GalileoÏs trajectory used a C3 of 13 km2 s~2
(Meissinger et al. 1997), but it took 6 yr to reach Jupiter,
with most of that time spent around 1 AU, and required

9 Available at http ://www.smad.com/analysis/hmeissinger.pdf.
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correct planetary alignment to allow for three planetary
Ñybys. Going to 5 AU also means long travel times through
the ecliptic plane, which increases the chance of micro-
meteorite damage. Finally, we did not iterate on mass
reduction in our optimization procedure. The large mass
reduction would provide a reduction in launch costs or
alternatively an orbit with a greater normal displacement
above the ecliptic.

Genetic algorithms have rendered three types of out-of-
the-ecliptic trajectories. We believe that the search for tra-
jectory types was thorough within the speciÐed search
limits, despite the probabilistic nature of the approach. The
trajectory design process used the database of trajectories
generated by the characterization process, yet it incorpor-
ated tighter parameter constraints. Both the low-energy and
the high-energy trajectories obtained by the design process
imply that the overall telescope collecting area, and hence
the mass and cost, can be signiÐcantly reduced. This is due
to the substantial reduction in zodi that results from the
out-of-the-ecliptic displacement of 0.22 and 0.37 AU for the
low- and high-energy trajectories, respectively. For com-
parison, in typical libration-point trajectories, the normal
excursion is up to an order of magnitude smaller. This high
displacement also considerably reduces the probability of
micrometeorite or space-debris damage, which could
extend the mission lifetime.

The mass reduction Ðgures used in this design process are
rather speciÐc for a T PF mid-IR interferometer looking for

terrestrial planets. As the local zodi cloud noise is mitigated,
a noise Ñoor is reached. This minimum noise level has spe-
ciÐc characteristics derived from the mission itself and is
determined by other noise sources that become drivers as
we escape the ecliptic. If the trajectories obtained are gener-
alized to other missions, such as Ðlled-aperture telescopes
like NGST and SIRT F, even further beneÐts in terms of
mass reduction are possible. BeneÐts are not nearly as dra-
matic for optical missions because the zodi intensity is
lower in the visible wavelength region.

The quest for optimal trajectories for space-borne obser-
vatories has by no means been exhausted by this study.
While the foundation for out-of-the-ecliptic trajectories has
been built, there are several additional points that need to
be clariÐed and further investigated. These include optimal
transfers from Earth to the initial orbit, use of electric pro-
pulsion, searching for optimal initial conditions in other
regions of the state space, including perturbations from
other solar-system bodies, and using lunar and planetary
Ñybys.
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