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Abstract. This paper presents a Hamiltonian approach to modelling spacecraft motion rela-
tive to a circular reference orbit based on a derivation of canonical coordinates for the relative

state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order
terms and orbital perturbations within the context of the Clohessy–Wiltshire solution. First,
the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton–Jacobi

equations are solved for the linear part by separation, and new constants for the relative
motions are obtained, called epicyclic elements. The influence of higher order terms and
perturbations, such as Earth’s oblateness, are incorporated into the analysis by a variation of

parameters procedure. As an example, closed-form solutions for J2-invariant orbits are
obtained.
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1. Introduction

The analysis of relative spacecraft motion constitutes an issue of increasing
interest due to existing and planned spacecraft formation flying and orbital
rendezvous missions. It was in the early 1960s that Clohessy and Wiltshire
first published their celebrated work that utilized a Hill-like rotating Carte-
sian coordinate system to derive expressions for the relative motion between
satellites in the context of a rendezvous problem (Clohessy and Wiltshire,
1960). The Clohessy–Wiltshire (CW) linear formulation assumed small
deviations from a circular reference orbit and used the initial conditions as
the constants of the unperturbed motion. Since then, recognizing the limi-
tations of this approach, others have generalized the CW equations for
eccentric reference orbits (Carter and Humi, 1987; Inalhan et al., 2002), and
to include perturbed dynamics (Alfriend and Schaub, 2000; Gim and
Alfriend, 2001; Scheeres et al., 2003).

An important modification of the CW linear solution is the use of orbital
elements as constants ofmotion instead of theCartesian initial conditions. This
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concept, originally suggested by Hill (1878), has been widely used both in the
analysis of relative spacecraft motion (Schaub et al., 2000) and in dynamical
astronomy (Namouni, 1999). Using this approach allows the effects of orbital
perturbations on the relative motion to be examined via variational equations
such as Lagrange’s planetary equations (LPEs) or Gauss’s variational equa-
tions (GVEs). Moreover, utilizing orbital elements facilitates the derivation of
high-order, nonlinear extensions to theCWsolution (Gurfil andKasdin, 2004).

There have been a few reported efforts to obtain high-order solutions to
the relative motion problem. Recently, Karlgaard and Lutze (2001) proposed
formulating the relative motion in spherical coordinates in order to derive
second-order expressions. The use of Delaunay elements has also been pro-
posed. For instance, Alfriend and Yan (2002) derived differential equations
in order to incorporate perturbations and high-order nonlinear effects into
the modelling of relative dynamics.

TheCWequations, obtained byutilizingCartesian coordinates tomodel the
relative motion state-space dynamics, usually cannot be solved in closed-form
for arbitrary generalized perturbing forces; on the other hand, the orbital
elements or Delaunay-based representations can be straightforwardly
expanded to treat orbital perturbations, but they utilize characteristics of the
inertial, absolute orbits. Hence, using orbital elements or Delaunay variables
constitutes an indirect representation of the relative motion problem.

This paper unifies the merits of the CW and the orbital elements-based
approaches by developing a Hamiltonian methodology that models the rel-
ative motion dynamics using canonical coordinates. The procedure, via
solution of the Hamilton–Jacobi equation, is identical to that leading to the
classical Delaunay variables, except that it is performed to first order in the
rotating Hill frame. The Hamiltonian formulation facilitates the modelling of
high-order terms and orbital perturbations via variation of parameters while
allowing us to obtain closed form solutions for the relative motion.

We start by deriving the Lagrangian for motion relative to a circular orbit
in Cartesian coordinates. Then, using a Legendre transformation, we calcu-
late the Hamiltonian for the relative motion. We partition the Hamiltonian
into a linear term and a high-order term. We then solve the Hamilton–Jacobi
(HJ) equation for the linear part by separation, obtaining new constants for
the relative motion which we call epicyclic elements. These elements can then
be used to define the parameters of a relative motion orbit or, more impor-
tantly, they can be used to predict the effect of perturbations via variation of
parameters.

As an example, we study the effect of J2 induced perturbations on a
relative motion orbit. We also show how the canonical approach can be used
to find general J2-invariant relative orbits similar to those in Schaub and
Alfriend (Schaub and Alfriend, 2001).
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2. The Lagrangian

The most convenient coordinate system for this problem is the one in which
the Hamilton–Jacobi equation most easily separates. We also would like to
operate in a coordinate system that most directly allows us to utilize control
and simulation techniques. Cartesian coordinates turn out to be most
convenient on all counts. Most of the work in this paper will be confined to
a rotating Cartesian Euler–Hill system as shown in Figure 1. This coordi-
nate system, denoted by R, is defined by the unit vectors x̂; ŷ; ẑ. The origin
of this coordinate system is set on a circular reference orbit of radius a

about the Earth. It is rotating with mean motion n ¼
ffiffiffiffi

l
a3

q

, where l is the

gravitational constant. The reference orbit plane is the fundamental plane,
the positive x̂-axis points radially outward, the ŷ-axis is rotated 90� in the
direction of motion on the reference orbit and lies in the fundamental plane,
and the ẑ-axis completes the setup to yield a Cartesian dextral system.

For simplicity, we treat the case of a relative motion with respect to a
circular reference orbit. This is the most common problem and should easily
reduce to the Clohessy–Wiltshire (CW) equations. We start with this case
because of its simplicity, allowing us to focus attention on the details of the
method. Nevertheless, we find that the resulting canonical perturbation
equations still provide new and meaningful results. In future work we will
present the more involved case of arbitrary elliptical orbits.

The first step is to develop the Lagrangian of relative motion in the
rotating frame R. The velocity of the follower spacecraft in R is given by the
usual equation:

v ¼I xR � r1 þ
dR

dt
qþI xR � q ð1Þ

where r1 2 R3 is the inertial position vector of the leader spacecraft along the
reference orbit, q ¼ ½x; y; z�T 2 R3 is the relative position vector in the
rotating frame, and IxR ¼ ½0; 0; n�T is the angular velocity of the rotating
frame R with respect to the inertial frame I. Assuming a circular reference

Figure 1. Relative motion rotating Euler–Hill reference frame.
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orbit, denoting kr1k ¼ a and substituting into Equation (1), we can write the
velocity in R in a component-wise notation:

v ¼
_x� ny

_yþ nxþ na
_z

2

4

3

5 ð2Þ

The kinetic energy per unit mass is given by

K ¼ 1

2
kvk2 ð3Þ

The potential energy (for a spherical attracting body) of the follower
spacecraft, whose position vector is r2, is the usual gravitational potential
written in terms of q ¼ kqk and expanded using Legendre polynomials:

U ¼ � l
kr2k

¼ � l
kr1 þ qk

¼ � l

a 1þ 2 r1�q
a2
þ q

a

� �2
h i1=2

¼ � l
a

X

1

k¼0
Pkðcos aÞ q

a

� �k

ð4Þ

where the Pkðcos aÞ are the Legendre polynomials,1

cos a ¼ � q � r1
aq
¼ �x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p ð5Þ

and a is the angle between the reference orbit radius vector and the relative
position vector, as shown in Figure 1.

The Lagrangian L : R3 � R3 ! R1 is now easily found by subtracting the
potential energy from the kinetic energy,

L ¼ 1

2
ð _x� nyÞ2 þ ð _yþ nxþ naÞ2 þ _z2
n o

þ n2a2
X

1

k¼0
Pkðcos aÞ q

a

� �k

ð6Þ

As in the treatment leading to the Clohessy–Wiltshire equations for relative
motion, we examine only small deviations from the reference orbit. Thus, we
only consider the first three terms of the potential energy,

Uð0Þ ¼ � l
a
� l
a2

q cos a� l
a3

q2 3

2
cos2 a� 1

2

� �

ð7Þ

and then use Equation (5) to find the low order Lagrangian,

1This expansion results from use of the well known generating function

gðt; xÞ ¼ ð1� 2xtþ t2Þ�
1
2 ¼

P1
n¼0 PnðxÞtn�1:

JEREMY KASDIN, PINI GURFIL AND EGEMEN KOLEMEN340



Lð0Þ ¼ 1

2
_x2 þ _y2 þ _z2
� �

þ n x _y� y _xþ a _yð Þ

þ 3

2
n2a2 þ 3

2
n2x2 � n2

2
z2 ð8Þ

with the perturbed part of the Lagrangian equal to the higher order terms in
the potential [Oððq=aÞ3Þ]. As a check, it is useful to derive the linear relative
equations of motion via the Euler–Lagrange equations on the Lagrangian in
Equation (8). Omitting the details, it is straightforward to derive the usual
CW equations:

€x� 2n _y� 3n2x ¼ Qx ð9Þ
€yþ 2n _x ¼ Qy ð10Þ
€zþ n2z ¼ Qz ð11Þ

where (Qx;Qy;Qz) are the generalized forces in the relative motion frame.
For the analysis that follows, we set Qx ¼ Qy ¼ Qz ¼ 0.

It is helpful before proceeding further to normalize our equations and
simplify the notation. Normalizing rates by n (so time is in units of radians,
or, equivalently, the argument of latitude, u) and relative distances by a (so
all distances are fractions of the reference orbit radius), the normalized
Lagrangian is given by:

�Lð0Þ ¼ 1

2
_x2 þ _y2 þ _z2
� �

þ ðxþ 1Þ _y� y _xð Þ þ 3

2
þ 3

2
x2 � 1

2
z2 ð12Þ

where now the dot over a variable represents differentiation with respect to
normalized time (u) and the coordinates ðx; y; zÞ are dimensionless (and small).

It is also straightforward to change coordinates, writing the Lagrangian in
the new coordinate system, and then use the Euler–Lagrange equations to find
the equations of motion in a new coordinate system. For example, in Kasdin
andGurfil (2004)we derive the equations ofmotion in cylindrical coordinates.

3. The Hamilton–Jacobi Solution

The overall objective is to divide the three-degree-of-freedom Hamiltonian
H : R3 � R

3 ! R
1 into a linear part and a perturbed part,

H ¼ Hð0Þ þ Hð1Þ

and then solve the Hamilton–Jacobi equation for the unperturbed, linear
system. This solution will provide us with new canonical coordinates and
momenta that are constants of the (relative) motion. The perturbation, or
variation of parameters, equations will then show how these constants vary
under various disturbances or higher order terms contained in Hð1Þ.
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Finding the Hamiltonian for the Cartesian system is straightforward.
First, the canonical momenta are found from the usual definition:

px ¼
@Lð0Þ
@ _x
¼ _x� y

py ¼
@Lð0Þ
@ _y
¼ _yþ xþ 1

pz ¼
@Lð0Þ

@ _z
¼ _z

ð13Þ

and then, using the Legendre transformation H ¼ _qipi � L, the unperturbed
Hamiltonian for relative motion in cartesian coordinates is found:

Hð0Þ ¼ 1

2
ðpx þ yÞ2 þ 1

2
ðpy � x� 1Þ2 þ 1

2
p2z �

3

2
� 3

2
x2 þ 1

2
z2 ð14Þ

This Hamiltonian is used to solve the Hamilton–Jacobi equation (see
Appendix A). Because the Hamiltonian is a constant, Hamilton’s principal
function easily separates into a time dependent part summed with Hamilton’s
characteristic function,

Sðx; y; z; uÞ ¼Wðx; y; zÞ � a001u

where a001 is the constant value of the unperturbed Hamiltonian, Hð0Þ. The
Hamilton–Jacobi equation then reduces to a partial differential equation in
Wðx; y; zÞ:

1

2

@W

@x
þ y

� �2

þ 1

2

@W

@y
� x� 1

� �2

þ 1

2

@W

@z

� �2

� 3

2
� 3

2
x2 þ 1

2
z2 ¼ a001 ð15Þ

Not unexpectedly, the z-coordinate easily separates. Separating the character-
istic function asWðx; y; zÞ ¼W0ðx; yÞ þW3ðzÞ, the HJ equation separates into

a02 ¼
1

2

dW3

dz

� �2

þ 1

2
z2 ð16Þ

a001 þ
3

2
� a02 ¼

1

2

@W0

@x
þ y

� �2

þ 1

2

@W0

@y
� x� 1

� �2

� 3

2
x2 ð17Þ

where a02 has been added and subtracted from Equation (15) for conve-
nience.

Equation (16) is just the HJ equation for simple harmonic motion (which
we expect from the well known solution of the CW equations).
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It is easily solved via quadrature:

W3ðzÞ ¼
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a02 � z2
q

dz

¼ 1

2

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a02 � z2
p

þ 2a02 sin
�1 z

ffiffiffiffiffi

2a0
2

p
� �

2

4

3

5 ð18Þ

The solution of Equation (17) is more subtle. We separate by using the well
known in-plane constant of integration of the CW equations. Setting a03 equal
to the integral of Equation (10) with the generalized force equal to zero
(Qy ¼ 0) and putting it in terms of the canonical momentum, the third
integration constant of the HJ equation is

a03 ¼ py þ x� 1 ð19Þ
Using the fact that py ¼ @W0=@y, the remaining HJ equation (17) separates if
we let

W0ðx; yÞ ¼W1ðxÞ þW2ðyÞ � yx ð20Þ
so that

dW2

dy
¼ a03 þ 1

and thus W2 ¼ ða03 þ 1Þy by quadrature. Equation (17) then simplifies to

dW1

dx

� �2

þx2 � 4a03x ¼ 2a01 � ða03Þ
2 ð21Þ

where we have used a01 ¼ a001 � a02 þ 3=2. This equation is again easily inte-
grated for W1 by quadrature,

W1 ¼
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a01 � ða03Þ
2 þ 4a03x� x2

q

dx ð22Þ

yielding

W1 ¼
�2a03 þ x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a01 þ 3ða03Þ
2 � ð�2a03 þ xÞ2

q

� 2a01 þ 3ða03Þ
2

2
sin�1

2a03 � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a01 þ 3ða03Þ
2

q

0

B

@

1

C

A

ð23Þ

The final generating function from the solution of the low-order HJ
equation is thus given by

Sðx; y; z; a01; a02; a03; uÞ ¼W1ðxÞ þW2ðyÞ þW3ðzÞ
� yx� ða01 þ a02Þðu� u0Þ ð24Þ
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(Note that we have omitted the constant 3/2 as it does not affect the solution
and, again, we use argument of latitude, u, rather than time, introducing an
arbitrary initial angle, u0, where we use the usual definition of the zero of u
being at the nodal crossing). It is straightforward to express the new
canonical momenta ða01; a02; a03Þ in terms of the original cartesian positions and
velocities (and thus in terms of the initial conditions). For instance, a03 is
given by Equation (19) using Equation (13). Equation (16) is used to find a02,
substituting pz from Equation (13) for dW3=dz. Finally, a01 ¼ a001 � a02 þ 3=2 is
simply the value of the Hamiltonian and is thus given by Equation (14) with
the momenta substituted from Eq. (13). The result is

a01 ¼
1

2
ðpx þ yÞ2 þ 1

2
ðpy � x� 1Þ2 � 3

2
x2 ¼ 1

2
_x2 þ 1

2
_y2 � 3

2
x2 ð25Þ

a02 ¼
1

2
p2z þ

1

2
z2 ¼ 1

2
_z2 þ 1

2
z2 ð26Þ

a03 ¼ py þ x� 1 ¼ _yþ 2x ð27Þ
The canonical coordinates (Q01;Q

0
2;Q

0
3) or the corresponding constant phase

variables (b01;b
0
2;b
0
3) are found via the partial derivatives of the generating

functions in Equation (24) with respect to each of the new canonical momenta,

Q0i ¼
@ Sðx; y; z; a01; a02; a03; uÞ þ a01ðu� u0Þ
� 	

@a0i
¼
@ Wðx; y; z; a01; a02; a03Þ
� 	

@a0i
ð28Þ

yielding

Q01 ¼ u� u0 þ b01 ¼ tan�1
x� 2a03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a01 � ða03Þ
2 þ 4a03x� x2

q

0

B

@

1

C

A

¼ � tan�1
3xþ 2 _y

_x

� �

ð29Þ

Q02 ¼ u� u0 þ b02 ¼ tan�1
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a02 � z2
p

 !

¼ tan�1
z

_z

� �

ð30Þ

Q03 ¼ b03 ¼ y� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a01 � ða03Þ
2 þ 4a03x� x2

q

þ 3a03 tan
�1 x� 2a03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a01 � ða03Þ
2 þ 4a03x� x2

q

0

B

@

1

C

A

¼ � ð3 _yþ 6xÞ tan�1 3xþ 2 _y

_x

� �

� 2 _xþ y ð31Þ
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where we have used the definitions of the canonical momenta in terms of
velocities in Equations (13) and Equations (25)–(19) to express these in
terms of the cartesian positions and rates. Note that the generalized
coordinate Q0i consists of a time term and a constant of the motion (a phase
like term), b0i.

While these canonical variables can be used in the final equations of
motion, one more modification dramatically simplifies the final result. We
define a new momentum variable, a1 ¼ a01 þ

3ða0
3
Þ2

2 , and solve for the new low
order Hamiltonian:

Hð0Þ ¼ a1 þ a2 ¼ a01 �
3ða03Þ

2

2
þ a02 ð32Þ

By modifying the generating function accordingly, we obtain equations for
the new canonical momenta and coordinates in terms of the Cartesian
variables:

a1 ¼
1

2
ðpx þ yÞ2 þ 2ðpy � x� 1Þ2 þ 9

2
x2 þ 6xðpy � x� 1Þ

¼ 1

2
_x2 þ ð2 _yþ 3xÞ2

� �

ð33Þ

a2 ¼
1

2
p2z þ

1

2
z2 ¼ 1

2
_z2 þ 1

2
z2 ð34Þ

a3 ¼ py þ x� 1 ¼ _yþ 2x ð35Þ

Q1 ¼ u� u0 þ b1 ¼ tan�1
x� 2a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a1 � 4a23 þ 4a3x� x2
q

0

B

@

1

C

A

¼ � tan�1
3xþ 2 _y

_x

� �

ð36Þ

Q2 ¼ u� u0 þ b2 ¼ tan�1
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a2 � z2
p

 !

¼ tan�1
z

_z

� �

ð37Þ

Q3 ¼� 3a3ðu� u0Þ þ b3 ¼ y� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a1 � 4a23 þ 4a3x� x2
q

¼� 2 _xþ y ð38Þ
Solving Equations (33)–(38) for x; y; and z yields the generating solution

for the Cartesian relative position components in terms of the new constants
of the motion, the canonical momenta (a1; a2; a3) and the canonical coordi-
nates (Q1;Q2;Q3):
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xðtÞ¼2a3þ
ffiffiffiffiffiffiffi

2a1
p

sinðQ1Þ¼2a3þ
ffiffiffiffiffiffiffi

2a1
p

sinðu�u0þb1Þ ð39Þ
yðtÞ¼Q3þ2

ffiffiffiffiffiffiffi

2a1
p

cosðQ1Þ¼3a3ðu�u0Þþb3þ2
ffiffiffiffiffiffiffi

2a1
p

cosðu�u0þb1Þ ð40Þ
zðtÞ¼

ffiffiffiffiffiffiffi

2a2
p

sinðQ2Þ¼
ffiffiffiffiffiffiffi

2a2
p

sinðu�u0þb2Þ ð41Þ

From Equations (33)–(38) (or, alternatively, by differentiating Equa-
tions (39)–(41) with respect to time) we can also obtain the expressions for
the Cartesian relative velocity components in terms of a1; a2; a3 and
b1;b2; b3:

_xðtÞ ¼
ffiffiffiffiffiffiffi

2a1
p

cosðu� u0 þ b1Þ ð42Þ

_yðtÞ ¼ �3a3 � 2
ffiffiffiffiffiffiffi

2a1
p

sinðu� u0 þ b1Þ ð43Þ

_zðtÞ ¼
ffiffiffiffiffiffiffi

2a2
p

cosðu� u0 þ b2Þ ð44Þ

Finally, it is often convenient to have expressions for the original
canonical momenta in terms of the new elements. These are easily found from
the transformation equations:

pxðtÞ ¼ �Q3 �
ffiffiffiffiffiffiffi

2a1
p

cosðu� u0 þ b1Þ ð45Þ

pyðtÞ ¼ 1� a3 �
ffiffiffiffiffiffiffi

2a1
p

sinðu� u0 þ b1Þ ð46Þ

pzðtÞ ¼
ffiffiffiffiffiffiffi

2a2
p

cosðu� u0 þ b2Þ ð47Þ

These equations are consistent with the well known results from the CW
equations:

xðtÞ ¼ _x0 sin u� ð2 _y0 þ 3x0Þ cos uþ ð2 _y0 þ 4x0Þ ð48Þ
yðtÞ ¼ 2 _x0 cos uþ ð4 _y0 þ 6x0Þ sin uþ ðy0 � 2 _x0Þ � ð3 _y0 þ 6x0Þu ð49Þ
zðtÞ ¼ z0 cos uþ _z0 sin u ð50Þ

where rates have again been normalized by the orbit rate, n. Thus, in
canonical coordinates, the motion consists of a periodic out-of-plane oscil-
lation parameterized by a2; b2, a periodic in-plane motion described by a1; b1,
and a secular drift in y given by a3. The usual invariance with y is given by the
arbitrary shift b3. It is straightforward to show that the generating solution
(39)–(41) is identical to the well known solution of the CW equations in terms
of initial conditions. We call the new constants of the motion
N ¼ ½a1; a2; a3;b1; b2;b3� epicyclic orbital elements for the relative motion.
They are defined on the manifold O� S3, where O ¼ R� R�0 � R � R3. For
comparison, the Cartesian vectors q and _q are defined on the tangent space
R3 � R3.
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4. Contact Epicyclic Elements

The epicyclic elements described above provide a convenient parameteriza-
tion of a first-order relative motion orbit in terms of amplitude and phase.
This can be particularly convenient when distributing satellites around a
periodic orbit (equal amplitudes, but different phases). However, variational
equations presented later for these elements can become quite complicated
and numerically sensitive. This is particularly a concern when some of the
amplitudes approach zero, resulting in the phase terms becoming ill-defined.
For these situations it is convenient to introduce an alternative set of con-
stants in terms of only amplitude variables. We call these the contact epicyclic
elements, label them N0 ¼ a1; a2; a3; b1; b2; b3½ �, and define them via the contact
transformation:

a1 ¼
ffiffiffiffiffiffiffi

2a1
p

cos b1 ð51Þ
b1 ¼

ffiffiffiffiffiffiffi

2a1
p

sin b1 ð52Þ
a2 ¼

ffiffiffiffiffiffiffi

2a2
p

cos b2 ð53Þ
b2 ¼

ffiffiffiffiffiffiffi

2a2
p

sin b2 ð54Þ
a3 ¼ a3 ð55Þ
b3 ¼ b3 ð56Þ

It can easily be shown that the transformation in Equations (51)–(56) is
symplectic. That is, it is straightforward to show that

@N0

@N

� �

J
@N0

@N

� �T

¼ J ð57Þ

where J is the symplecitic matrix ½0; I;�I; 0�. Thus, the new elements are also
canonical and satisfy Hamilton’s equations. For some problems, the varia-
tional equations for these elements will be easier to work with. In terms of the
new canonical momenta ða1; a2; a3Þ and new canonical coordinates
ðb1; b2; b3Þ, the Cartesian relative position equations become

xðtÞ ¼ 2a3 þ a1 sinðu� u0Þ þ b1 cosðu� u0Þ ð58Þ
yðtÞ ¼ b3 � a3ðu� u0Þ � 2b1 sinðu� u0Þ þ 2a1 cosðu� u0Þ ð59Þ
zðtÞ ¼ b2 cosðu� u0Þ þ a2 sinðu� u0Þ ð60Þ

Finally, it is important to note that Equations (39)–(44) or Equations (58)–
(60) constitute global coordinates for the tangent space R3 � R3 for the rel-
ative motion, due to that fact the epicyclic orbital elements are canonical.
This means that variations of the parameters N or N0 due to perturbations can
be obtained via Hamilton’s equations on a perturbing Hamiltonian, and the
resulting time varying parameters NðtÞ or N0ðtÞ can then be substituted into
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the generating solutions (39)–(41) or (58)–(60) to yield the exact relative
motion description in the configuration space R3.

One important caveat is necessary. While nominally either set of elements
can be used for perturbation analysis, it is only the original epicyclic elements
for which the Hamiltonian splits into a nominal, unperturbed part and a
perturbation part. The value of this is that Hamilton’s equations can be used
on the perturbation Hamiltonian alone (as with Delaunay elements in the
two-body problem) in terms of the epicyclic elements. This is not the case for
the contact elements, as they do not necessarily solve the H–J equation. The
approach we will take is to find the perturbation differential equations for the
original epicyclic elements and then perform the transformation to contact
elements, using the chain rule to find the desired differential equations for
these elements.

5. Perturbation Analysis

The primary value of the canonical approach is the ease with which equations
for the variations of parameters can be found. Specifically, the variations of
the epicyclic orbital elements are given by Hamilton’s equations applied to
the perturbation Hamiltonian, Hð1Þ:

_ai ¼ �
@Hð1Þ
@Qi

ð61Þ

_bi ¼
@Hð1Þ
@ai

ð62Þ

_Qi ¼
@Hð0Þ
@ai

þ _bi ð63Þ

These can be used to find the effect on the elements of any number of
perturbations which are derived from a conservative potential, such as high-
order gravitational harmonics (oblateness) and third-body effects, in a similar
manner to the variation of the Delaunay elements (Lagrange’s planetary
equations can be found via a non-symplectic transformation of the Delaunay
elements). To demonstrate the methodology, in the remainder of this section
we consider the effect of the Earth’s zonal harmonics, particularly the J2 term.
For Earth orbiting systems, this is often one of the largest perturbations and
the most disruptive for maintaining formations. While all of the results may
not be new, this approach is unique, with the benefit of all variables being
differential, and this example provides an important verification of themethod.

Treating the Earth as axially symmetric, the external potential including
the gravitational zonal harmonics, U� ¼ U þUzonal, is given by (Battin,
1999):
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Uzonal ¼
l�
kr2k

X

1

k¼2
Jk

R�
kr2k

� �k

Pkðcos/Þ ð64Þ

where / is the follower spacecraft colatitude angle, given by

cos/ ¼ Z

kr2k
ð65Þ

Z is the normal deflection in an inertial, geocentric–equatorial reference
frame and the Jk’s are constants, the first three of which are

J2 ¼ 0:00108263 ð66Þ
J3 ¼ �0:00000254 ð67Þ
J4 ¼ �0:00000161 ð68Þ

The perturbed relative motion is then found by setting the perturbing
Hamiltonian equal to this potential, Hð1Þ ¼ Uzonal, and substituting
kr2k ¼ k qþ r1k. By using Equations (39)–(41), the Hamiltonian can be
written in terms of the epicyclic elements and then the variational equations
of motion can be found via Equations (61)–(63).

5.1. EXAMPLE 1: J2 PERTURBATION IN EQUATORIAL ORBITS

To illustrate the analysis, we start with the simpler problem of a circular,
equatorial reference orbit and ask for the variational equations of the contact
elements describing a relative motion due to J2. Substituting i ¼ 0 in the
zonal potential, the perturbing Hamiltonian, in terms of the cartesian Euler–
Hill coordinates, is given by

Hð1Þ ¼
n2J2R

2
�ð2z2 � 1� 2x� x2 � y2Þ

2a2ð1þ 2xþ x2 þ y2 þ z2Þð5=2Þ
ð69Þ

where we have again normalized the distances by the reference orbit radius, a.
Expanding to second order in the elements and substituting for ðx; y; zÞ yields
the perturbing Hamiltonian in terms of the epicyclic elements,

Hð1Þ ¼ � 1

2
J2

R�
a

� �2

1� 6a3 � 3
ffiffiffiffiffiffiffi

2a1
p

sinQ1 þ 24a23

�

þ24
ffiffiffiffiffiffiffi

2a1
p

a3 sinQ1 þ 12a1 sin
2 Q1

� 3

2
Q2

3 � 6
ffiffiffiffiffiffiffi

2a1
p

Q3 cosQ1

�12a1 cos2Q1 � 9a2 sin
2 Q2

�

ð70Þ
where we have eliminated the leading n2 term since we again have put time in
units of argument of longitude.
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Equations (61)–(63) are now used to find the differential equations for the
epicyclic elements,

_a1 ¼ �
3

2
J2

R�
a

� �2 �
ffiffiffiffiffiffiffi

2a1
p

cosQ1 þ 8
ffiffiffiffiffiffiffi

2a1
p

a3 cosQ1

þ2
ffiffiffiffiffiffiffi

2a1
p

Q3 sinQ1 þ 8a1 sin 2Q1

� �

ð71Þ

_b1 ¼ �
3

4

J2
ffiffiffiffiffi

a1
p R�

a

� �2 8
ffiffiffi

2
p

a3 sinQ1 �
ffiffiffi

2
p

sinQ1

�16 ffiffiffiffiffi

a1
p

cos2 Q1 � 2
ffiffiffi

2
p

Q3 cosQ1

þ8 ffiffiffiffiffi

a1
p

0

B

@

1

C

A

ð72Þ

_a2 ¼ �
9

2
J2

R�
a

� �2

a2 sin 2Q2 ð73Þ

_b2 ¼
9

2
J2

R�
a

� �2

sin2 Q2 ð74Þ

_a3 ¼ �
3

2
J2

R�
a

� �2

Q3 þ 2
ffiffiffiffiffiffiffi

2a1
p

cosQ1

� �

ð75Þ

_Q3 ¼ �3a3 þ 3J2
R�
a

� �2

1� 8a3 � 4
ffiffiffiffiffiffiffi

2a1
p

sinQ1

� �

ð76Þ

As alluded to in Section 4, these equations are reasonably complicated and
nonlinear, with an evident singularity at a1 ¼ 0. Therefore, it is more con-
venient, and useful, to change to the contact epicyclic elements, resulting in
the time varying differential equations,

_a1 ¼
3

2
J2

R�
a

� �2 � cosðu� u0Þ þ 4 sinð2ðu� u0ÞÞa1
þ4 cosð2ðu� u0ÞÞb1 þ 2 sinðu� u0Þq3

þ8 cosðu� u0Þa3

0

B

@

1

C

A

ð77Þ

_b1 ¼
3

2
J2

R�
a

� �2 sinðu� u0Þ þ 4 cosð2ðu� u0ÞÞa1
�4 sinð2ðu� u0ÞÞb1 þ 2 cosðu� u0Þq3

�8 sinðu� u0Þa3

0

B

@

1

C

A

ð78Þ

_a2 ¼ �
9

4
J2

R�
a

� �2

ð1þ cosð2ðu� u0ÞÞÞb2 � sinð2ðu� u0ÞÞa2ð Þ ð79Þ

_b2 ¼
9

4
J2

R�
a

� �2

sinð2ðu� u0ÞÞb2 � ð1� cosð2ðu� u0ÞÞÞa2ð Þ ð80Þ

_a3 ¼ �
3

2
J2

R�
a

� �2

q3 þ 2 cosðu� u0Þa1 � 2 sinðu� u0Þb1ð Þ ð81Þ

_q3 ¼ �3a3 þ 3J2
R�
a

� �2 1� 8a3 � 4 sinðu� u0Þa1
�4 cosðu� u0Þb1

� �

ð82Þ

where we have used q3 ¼ �3a3ðu� u0Þ þ b3 ¼ Q3
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These equations can be used to analyze the effect of J2 on the relative motion
in equatorial orbits as well as to search for initial conditions that guarantee
bounded formations. As a first check of the validity of the result, we examine
the stable, circular orbit solution of a constant radial offset. It is well known
that in an equatorial orbit the purely radial perturbed force still allows for a
circular orbit but with a modified rate. Alternatively, we can ask for the
small, constant radial offset (non-zero x) that will produce an orbit with the
reference orbit rate. One approach is to simply equate the radial gravitational
force with the centrifugal force of an orbit at rate n. To first order in J2 the
result is an offset of x0 ¼ J2

2
R�
a

� �2
. This same result can easily be found via the

C–W differential equations by inserting a radial perturbing force,
fr ¼ � 3

2

lJ2R2
�

r4
, setting all rates to zero, and solving for x0 to first order. Again,

the result is x0 ¼ J2
2

R�
a

� �2
. We now search for that same result in Equations

(77)–(82). Keeping only terms to first order in J2 and the epicyclic elements,
the equations simplify to

_a1 ¼ �
3

2
J2

R�
a

� �2

cosðu� u0Þ ð83Þ

_b1 ¼
3

2
J2

R�
a

� �2

sinðu� u0Þ ð84Þ

_a2 ¼ 0 ð85Þ
_b2 ¼ 0 ð86Þ
_a3 ¼ 0 ð87Þ

_q3 ¼ �3a3 þ 3J2
R�
a

� �2

ð88Þ

These equations can be solved by quadrature

a1 ¼ a1ð0Þ �
3

2
J2

R�
a

� �2

sinðu� u0Þ ð89Þ

b1 ¼ b1ð0Þ �
3

2
J2

R�
a

� �2

cosðu� u0Þ ð90Þ

a2 ¼ a2ð0Þ ð91Þ
b2 ¼ b2ð0Þ ð92Þ
a3 ¼ a3ð0Þ ð93Þ

q3 ¼ q3ð0Þ þ 3 J2
R�
a

� �2

�a3ð0Þ
 !

ðu� u0Þ ð94Þ

One equilibrium solution to these equations has no out-of-plane motion
(a2ð0Þ ¼ b2ð0Þ ¼ 0) and a3ð0Þ ¼ J2

R�
a

� �2
to eliminate the drifting term. To see
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that this is the same radial offset solution, we insert this solution back into
Equations (58) and (59) to find that the solution in theEuler–Hill frame is y ¼ 0
and x ¼ J2

2
R�
a

� �2
as expected. This confirms the validity of the approach. We

also note that this condition is necessary for any non-drifting solution in the
equatorial Euler–Hill frame and it eliminates all effects of J2 to first order.

We also make an observation. One might expect from looking at Equa-
tions (58) and (59) that this constant equilibrium would be entirely contained
in a3, with q3 ¼ a1 ¼ b1 ¼ 0. This is not the case, however. A careful solution
of the time varying equations shows that under perturbation, a1 and b1 have
an in-phase harmonic solution resulting in the constant result. This is similar
to the inertial description of this orbit using Lagrange’s planetary equations,
which consist of an osculating ellipse of varying eccentricity always tangent
to the physical, circular orbit trajectory.

5.2. EXAMPLE 2: GENERAL J2 PERTURBATIONS ON RELATIVEMOTION

TRAJECTORIES

In our next example, we turn to the full J2 perturbed problem; that is, we
allow for inclined reference orbits. The analysis becomes more problematic
here. Without even searching for the variational equations, we know that any
satellite orbit will have a long term, secular drift in the node angle and
argument of perigee induced by oblateness, causing any relative motion ana-
lysis to lose validity as the satellite drifts away from the Euler–Hill reference
frame. Schaub and Alfriend (Alfriend and Schaub, 2000; Alfriend and Yan,
2002), for example, realizing this, derived general J2-invariant (and almost
invariant) satellite formations by matching these drifts among the satellites. In
other words, the satellite orbits still drift relative to the usual Hill reference
frame, but they drift in such a way that the formation remains bounded.

To find the linearized effects of J2 on a general satellite relative orbit and to
search for bounded formations, it is therefore most insightful to return to the
original derivationand replace thefixed referenceorbitwith a circular orbit also
rotating at themean J2 induced drift. Themotion can then be examined relative
to this drifting reference orbit. We do this is in the following subsections.

5.2.1. The modified reference orbit and J2 perturbing Lagrangian
and Hamiltonian

As the reference orbit is circular, we need only account for the long-term,
uniform drift in the right ascension of the ascending node (X) and the long
term drift in the argument of latitude (u ¼Mþ x). Allowing the reference
orbit to have a drift in the longitude of the ascending node, _X, and argument
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of latitude, _u, results in a modification to the angular velocity between this
modified Hill frame and the inertial frame. Using the 3-1-3 ordered rotation
ðX; i; uÞ and the fact that there is no long term drift in inclination, i, the
angular velocity, expressed in the inertial frame (I), is now given by

IxR ¼
_X sin i sin u
_X sin i cos u
_X cos iþ _u

2

4

3

5

I

ð95Þ

where u is the argument of latitude, _u ¼ nþ dn is the modified orbit rate
including the J2 perturbation, and n ¼

ffiffiffiffiffiffiffiffiffiffi

l=�a3
p

, �a being the mean semi-major
axis. Note that we are not necessarily making the assumption that there is a
satellite on the reference orbit experiencing the J2 perturbations nor are we
assuming that these rates represent any physical effect; we are simply mod-
ifying the angular velocity of the reference orbit by additional constant rates.

The equation for the rotation rates are somewhat subtle to obtain. The
typical expressions are written in terms of the initial or mean semi-major axis
of the osculating orbits (see, e.g., Battin, 1999 or Vinti, 1998). Here, however,
we select a reference orbit with the radius, �r, equivalent to the mean radius of
the J2 perturbed orbit (Born, 2001),

�r ¼ �aþ 3

4
J2

R�
�a

� �2

ð3 sin2 i� 2Þ ð96Þ

Since we are free to select the reference orbit, this equation is solved for �a and
then used to find the mean rates of change of the node angle and argument of
latitude (Vinti, 1998; Born, 2001) for the arbitrary, circular reference orbit,

_X ¼ � 3

2
�nJ2

R�
�r

� �2

cos i ð97Þ

dn ¼ 3

4
�nJ2

R�
�r

� �2

3� 7

2
sin2 i

� �

ð98Þ

where �n ¼
ffiffiffiffiffiffiffiffiffi

l=�r3
p

. Note also that in Equation (98) we have included in _u both
the effect of the rate of change of true anomaly and of the argument of
perigee as the reference orbit is circular (i.e., _u ¼ _Mþ _x).

We now substitute this angular velocity into Equation (1) to find the
satellite’s new velocity vector with respect to inertial space:

v ¼
_x� �ny

_yþ �nxþ �n�r

_z

2

6

4

3

7

5

þ

_Xsicuz� _Xciy� dny

ð _Xci þ dnÞðxþ �rÞ
� _Xsisuz

( )

_Xsisuy� _Xsicuðxþ �rÞ

2

6

6

6

6

4

3

7

7

7

7

5

ð99Þ

where we have used the notation si ¼ sinðiÞ; ci ¼ cosðiÞ, and so on.
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The Lagrangian is now computed in the same manner as before by
subtracting the potential energy from the kinetic energy, but now including
the new velocity expressions in the kinetic energy and the perturbing po-
tential from Equation (64):

L ¼ 1

2
jvj2 þ �n2�r2

X

1

k¼0
Pkðcos aÞ q

�r

� �k

� �Uzonal ð100Þ

As we did in the original problem, we simplify by normalizing the
Lagrangian. We normalize all distances by the reference orbit radius, �r and
rates (i.e., time) by �n. This results in the normalized Lagrangian:

�L ¼ 1

2
jvð0Þj2 þ vð0Þ � vð1Þ þ 1

2
jvð1Þj2

þ
X

1

k¼0
Pkðcos aÞðqÞk � �Uzonal ð101Þ

where, as before, all distances are dimensionless, the argument of latitude is
used instead of time, and all differentiation is with respect to normalized time.
Here, vð0Þ is the part of the normalized velocity in the relative motion frame
independent of J2 (and the same as the velocity in the original problem),

vð0Þ ¼
_x� y

_yþ ðxþ 1Þ
_z

2

4

3

5 ð102Þ

and vð1Þ is the small remaining term of order J2,

vð1Þ ¼
v
ð1Þ
x

v
ð1Þ
y

vð1Þz

2

4

3

5 ¼
_�Xsicuz� ð _�Xci � �dnÞy

ð _�Xci � �dnÞðxþ 1Þ � _�Xsisuz
_�Xsisuy� _�Xsicuðxþ 1Þ

2

6

4

3

7

5

ð103Þ

where _�X ¼ _X=�n and �dn ¼ dn=�n.
As before, we keep only the low order terms in the Lagrangian. For this

treatment we use only the first order potential as we did earlier and we keep
terms only to first order in J2, thus allowing us to immediately drop the
second order term, 1

2 jvð1Þj
2 from Equation (101). The result is a low order

Lagrangian identical to our earlier treatment (Equation 12) but with two
additional perturbing terms:

�L ¼ �Lð0Þ þ vð0Þ � vð1Þ � �Uzonal ð104Þ
We note here that the Euler–Lagrange equations could be used on this
Lagrangian to find differential equations for the motion in this new
rotating frame, which may have some usefulness for control design, for
example.
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We are now in a position to study the effect on the relative motion due to
the J2 perturbation. Because the perturbation terms in Equation (104) have a
velocity dependence, it is not as simple as finding the variations of the epi-
cyclic element equations from before due to the perturbing potential. We
must redefine the canonical momenta for this new drifting frame of reference.
Using the usual definition,

px ¼
@�L
@ _x
¼ _x� yþ vð1Þx

py ¼
@�L
@ _y
¼ _yþ xþ 1þ vð1Þy ð105Þ

pz ¼
@�L
@ _z
¼ _zþ vð1Þz

and again using the Legendre transformation, H ¼
P

_qipi � L, we find the
new Hamiltonian,

H ¼ 1

2
px þ y� vð1Þx

� �2

þ 1

2
py � ðxþ 1Þ � vð1Þy

� �2

þ 1

2
ðpz � vzÞ2

� 3

2
� 3

2
x2 þ 1

2
z2 þ yvð1Þx � ðxþ 1Þvð1Þy þ �Uzonal ð106Þ

There are two possible solution approaches at this stage. The first is to solve
theHamilton–Jacobi equation again butwith the low-orderHamiltonian given
by the terms in Equation (106) without the perturbing effective potential. This
would result in new closed-form equations for the relative motion about the
new drifting reference orbit in terms of new, constant J2-dependent epicyclic
elements. The variational equations for these elements could then be found via
Hamilton’s equations on the perturbing effective potential as usual. The
advantage of this approach is that the perturbations are entirely velocity (i.e.,
momentum) independent. Thus, the solution trajectory is guaranteed to be
osculating; that is, the solution is tangent everywhere to the physical trajectory
that incorporates the variations of the parameters (Efroimsky and Goldreich,
2003, 2004). The disadvantage is that it requires finding a new solution to the
H–J equation (a formidable task, particularly since the nominalHamiltonian is
time-varying) and no longer has as clear a connection to the CW solution. We
report on this approach in a future paper.

The second approach, and the one we take in the sequel, is to multiply out
the terms in Equation (106) that depend upon vð1Þ and treat them as per-
turbations. In other words, we expand the Hamiltonian again into a low
order term and perturbing term,

H ¼ Hð0Þ þ Hð1Þ ð107Þ
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where Hð0Þ is the same as in our original problem given by Equation (14) and
the perturbing part is given by

Hð1Þ ¼ �pxvð1Þx � pyv
ð1Þ
y � pzv

ð1Þ
z þ �Uzonal ð108Þ

where we have again dropped terms of second order (or higher) in J2.
In this case, the solution to the H–J equation is the same as given previ-

ously. The nominal trajectory in the drifting frame is again given by Equa-
tions (39)–(41) and the relationship between the epicyclic elements and the
canonical momenta and Cartesian position is the same as in Equations (33)–
(35). However, the equalities relating the epicyclic momenta to the Cartesian
position and velocities (initial conditions) must be modified due to the new
definition of the canonical momenta in the drifting frame (Equations (105)).
Also, because we have introduced a perturbing Hamiltonian simply due to
the rotating frame, the ai and bi are no longer constant but vary even in the
case of no perturbing potential.

The epicyclic elements for this new drifting frame are now given, in terms
of normalized positions and velocities, by

a1 ¼
1

2
_xþ vð1Þx

� �2

þ 1

2
ð2ð _yþ vð1Þy Þ þ 3xÞ2 ð109Þ

a2 ¼
1

2
_zþ vð1Þz

� �2

þ 1

2
z2 ð110Þ

a3 ¼ _yþ 2xþ vð1Þy ð111Þ

The phase variables ðb1; b2;b3Þ are found in a similar manner by substituting
these expressions for ða1; a2; a3Þ into Equations (36)–(38). Note also that the
well-known constant of the motion in the traditional CW problem (a3) has
been modified to account for the drift of the reference frame due to J2.

The generating solution for the cartesian relative position components in
the new drifting frame is the same as before (Equations (39)–(41)),

xðtÞ ¼ 2a3 þ
ffiffiffiffiffiffiffi

2a1
p

sinðu� u0 þ b1Þ ð112Þ

yðtÞ ¼ �3a3ðu� u0Þ þ b3 þ 2
ffiffiffiffiffiffiffi

2a1
p

cosðu� u0 þ b1Þ ð113Þ

zðtÞ ¼
ffiffiffiffiffiffiffi

2a2
p

sinðu� u0 þ b2Þ ð114Þ

and the expressions for the canonical momenta are also the same,

pxðtÞ ¼ �Q3 �
ffiffiffiffiffiffiffi

2a1
p

cosðu� u0 þ b1Þ ð115Þ

pyðtÞ ¼ 1� a3 �
ffiffiffiffiffiffiffi

2a1
p

sinðu� u0 þ b1Þ ð116Þ

pzðtÞ ¼
ffiffiffiffiffiffiffi

2a2
p

cosðu� u0 þ b2Þ ð117Þ
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However, the cartesian velocities are slightly modified to account for the new
drift terms,

_xðtÞ ¼
ffiffiffiffiffiffiffi

2a1
p

cosðu� u0 þ b1Þ � vð1Þx ð118Þ
_yðtÞ ¼ �3a3 � 2

ffiffiffiffiffiffiffi

2a1
p

sinðu� u0 þ b1Þ � vð1Þy ð119Þ

_zðtÞ ¼
ffiffiffiffiffiffiffi

2a2
p

cosðu� u0 þ b2Þ � vð1Þz ð120Þ

Unlike the original problem, it is not straightforward to find the cartesian
velocities simply by differentiating the position variables in Equations (112)–
(114). Recall that, because the effect of the small drift of the frame is being
treated as a perturbation, the epicyclic elements here are not constant, even in
the absence of a conservative perturbation potential. Thus, differentiating
Equations (112)–(114) requires the inclusion of expressions for the rates of
change of the elements as well. Here, we found the velocities from the
expressions for the canonical momenta.

Another subtlety in this approach comes in the interpretation of the
perturbed motion. The variation of the constants can still be found via
Hamilton’s equations on Hð1Þ in Equation (108). However, now the per-
turbing Hamiltonian is velocity dependent (i.e., a function of the canonical
momenta). It is a theorem that for any velocity dependent perturbations, the
nominal trajectory is not osculating (Efroimsky and Goldreich, 2003; 2004).
In other words, the variational equations we will find for the epicyclic ele-
ments can still be used to model the relative motion in the new drifting frame,
but the unperturbed elliptic trajectory given by Equations (112)–(114) is not
tangent to the perturbed, physical trajectory.

5.2.2. Contact epicyclic elements

As we did in Section 4 we can convert from the epicyclic elements to the
canonical contact set. This results in the same expressions for the cartesian
positions,

xðtÞ ¼ 2a3 þ a1 sinðu� u0Þ þ b1 cosðu� u0Þ ð121Þ
yðtÞ ¼ b3 � a3ðu� u0Þ � 2b1 sinðu� u0Þ þ 2a1 cosðu� u0Þ ð122Þ
zðtÞ ¼ b2 cosðu� u0Þ þ a2 sinðu� u0Þ ð123Þ

but, again, a slightly modified version of the cartesian rates,

_xðtÞ ¼ a1 cosðu� u0Þ � b1 sinðu� u0Þ � vð1Þx ð124Þ
_yðtÞ ¼ �3a3 � 2a1 sinðu� u0Þ � 2b1 cosðu� u0Þ � vð1Þy ð125Þ
_zðtÞ ¼ a2 cosðu� u0Þ � b2 sinðu� u0Þ � vð1Þz ð126Þ
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5.2.3. Variation of parameters

Finally, we arrive at the derivation of the variational equations for the epi-
cyclic elements relative to the average drifting frame due to J2. First, by
substituting for the various expressions in Equation (108) we find the time
varying perturbing Hamiltonian (keeping terms only to second order in the
cartesian positions and velocities):

Hð1Þ ¼ J2
8

R�
�r

� �2

8� 24xþ 48x2� 24y2� 24z2þ 3py� 3ypxþ 3xpy
þð12� 42y2� 30z2� 36xþ 72x2Þcos2ðuÞcos2ðiÞ
� 12� 42y2� 36x� 30z2þ 72x2
� �

cos2ðuÞ

� 12� 42z2þ 9py� 9pxyþ 72x2

�36x� 30y2þ 9pyx

� �

cos2ðiÞ
þ 6pxz� 6pzx� 6pzþ 12yzð Þ sinð2iÞcosðuÞ
þ 12z� 48xzþ 6pzy� 6pyz
� �

sinð2iÞ sinðuÞ
� 12y� 48xyð Þcos2ðiÞ sinð2uÞ� 48x� 12yð Þ sinð2uÞ

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

ð127Þ

This perturbing Hamiltonian is used to find the equations of motion for the
epicyclic elements via Hamilton’s Equations (61)–(63). However, as we
described in Section 4, the resulting differential equations are nonlinear in the
elements and rather cumbersome to evaluate. Instead, we again convert from
the epicyclic elements to the contact elements and use the chain rule to find
the resulting linear first-order variational equations. As we did for the
equatorial orbit, we drop the homogeneous terms as second-order small and
study only the inhomogeneous part of the variational equations due to J2,

_a1 ¼ �
3

32
J2

R�
�r

� �2

cosð2i� u� u0Þ � 7 cosð3u� u0 þ 2iÞ
þ14 cosð3u� u0Þ þ 6 cosðu� u0 � 2iÞ
þ4 cosðu� u0Þ � 7 cosð3u� u0 � 2iÞ
þ6 cosðu� u0 þ 2iÞ � 2 cosðuþ u0Þ
þ cosðuþ u0 þ 2iÞ

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

ð128Þ

_b1 ¼
3

32
J2

R�
�r

� �2

� sinðuþ u0 þ 2iÞ � sinðuþ u0 � 2iÞ
þ14 sinð3u� u0Þ � 7 sinð3u� u0 þ 2iÞ
�7 sinð3u� u0 � 2iÞ
þ6 sinðu� u0 � 2iÞ þ 6 sinðu� u0 þ 2iÞ
þ2 sinðuþ u0Þ þ 4 sinðu� u0Þ

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

ð129Þ
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_a2 ¼
3

8
J2

R�
�r

� �2

cosð2u� u0 þ 2iÞ � cosð2u� u0 � 2iÞð Þ ð130Þ

_b2 ¼�
3

8
J2

R�
�r

� �2

sinð2u� u0 þ 2iÞ � sinð2u� u0 � 2iÞð Þ ð131Þ

_a3 ¼�
3

8
J2

R�
�r

� �2

sinð2u� 2iÞ þ sinð2uþ 2iÞ � 2 sinð2uÞð Þ ð132Þ

_q3 ¼�3a3 �
9

16
J2

R�
�r

� �2 4 cosð2uÞ � 2 cosð2u� 2iÞ
�2 cosð2uþ 2iÞ þ 3 cosð2iÞ þ 1

 !

ð133Þ

These equations can easily be solved by quadrature. The motion of the
satellite in the relative frame is then found by substituting the solutions for the
variations of the contact epicyclic elements (in terms of arbitrary initial condi-
tions ða1ðu0Þ; b1ðu0Þ; a2ðu0Þ; b2ðu0Þ; a3ðu0Þ; q3ðu0ÞÞ into Equations (121)–(123).

As in the equatorial orbit case, we can search for conditions of bounded
relative motion. Because of our choice of drifting reference orbit, this is easily
accomplished. By examining the equations for q3ðuÞ (or _q3), we can solve for
the initial condition on a3ðu0Þ to eliminate the drift term,

a3ðu0Þ ¼
3

16
J2

R�
�r

� �2
1þ 3 cosð2iÞ þ 2 cosð2u0Þ
� cosð2i� 2u0Þ � cosð2iþ 2u0Þ


 �

ð134Þ

(Recall that in the unperturbed case, a3ðu0Þ ¼ 0 was the usual condition in
the C–W equations to eliminate the drift term.)

We can substitute this condition on a3ðu0Þ into the integrated equations
for the elements and then substitute into the cartesian position equations
(112)–(114) to find the bounded equations for perturbed motion of xðuÞ, yðuÞ,
and zðuÞ,

xðuÞ ¼ a1ðu0Þ sinðu� u0Þ þ b1ðu0Þ cosðu� u0Þ

þ 1

32
J2

R�
�r

� �2

4 cosð2uÞ � 2 cosð2uþ 2iÞ � 2 cosð2u� 2iÞ

þ12 cosðu� u0Þ þ 6 cosðuþ u0Þ

þ18 cosðu� u0 � 2iÞ þ 18 cosðu� u0 þ 2iÞ

�3 cosðuþ u0 � 2iÞ � 3 cosðuþ u0 þ 2iÞ

þ14 cosðu� 3u0Þ

�7 cosðu� 3u0 þ 2iÞ � 7 cosðu� 3u0 � 2iÞ
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B
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ð135Þ
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yðuÞ ¼q3ðu0Þ þ 2a1ðu0Þ cosðu� u0Þ � 2b1ðu0Þ sinðu� u0Þ

þ 1

32
J2

R�
�r

� �2

2 sinð2uÞ � sinð2u� 2iÞ � sinð2uþ 2iÞ
�24 sinðu� u0Þ � 12 sinðuþ u0Þ � 18 sinð2u0Þ
þ9sinð2u0þ 2iÞ þ 9sinð2u0� 2iÞ
�36 sinðu� u0� 2iÞ � 36 sinðu� u0þ 2iÞ
þ6sinðuþ u0� 2iÞ þ 6sinðuþ u0þ 2iÞ
�28 sinðu� 3u0Þ
þ14 sinðu� 3u0þ 2iÞ þ 14 sinðu� 3u0� 2iÞ
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ð136Þ

zðuÞ ¼a2ðu0Þ sinðu� u0Þ þ b2ðu0Þ cosðu� u0Þ

þ 3

16
J2

R�
�r

� �2 cosðuþ 2iÞ � cosðu� 2iÞ
þ cosðu� 2u0 þ 2iÞ � cosðu� 2u0 � 2iÞ

� �

ð137Þ
To partially verify these equations, we again examine the case of i ¼ 0.
By selecting all of the initial conditions to be zero (a1ðu0Þ ¼
a2ðu0Þ ¼ b2ðu0Þ ¼ q3ðu0Þ ¼ 0) except for b1ðu0Þ ¼ ð3=2ÞJ2 R�

�r

� �2
and a3ðu0Þ ¼

ð3=4ÞJ2 R�
�r

� �2
(the no-drift condition), the initial cartesian positions and rates

are all zero. Substituting into Equations (135)–(137) shows that the satellite
remains at the origin of the new, drifting relative motion frame for all time.
This is again the known circular orbit equilibrium solution at the equator,
where, for a given radius of the orbit, �r, the orbit rate is no longer the

Keplerian �n but instead is given by _Xþ _u ¼ �n 1þ 3
4 J2

R�
�r

� �2
h i

as in Section 5.1,
where, again, �n ¼

ffiffiffiffiffiffiffiffiffi

l=�r3
p

.2

5.2.4. Simulation results

In this section we present simulations of a few select bounded relative orbit
trajectories and compare to a nonlinear simulation of the two-body equations
of motion in inertial space incorporating the J2 zonal harmonic as a per-
turbing force. The nonlinear simulation results are rotated into the relative
motion frame for comparison.

The linearized trajectories are found by selecting initial conditions on the
epicyclic elements and then substituting into Equations (135)–(137) for

2We note again that this modified orbit rate result for circular equatorial orbits with J2
perturbations is only accurate to first-order in J2. The exact expression for the orbit rate is
�n
�

1þ 3
2 J2
�

R�
�r

�2	1=2
. For low Earth orbits the error amounts to tens of meters per orbit.
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simulation. In all simulations, a3ðu0Þ was selected to satisfy the no-drift
condition in Equation (134).

Initial conditions for the nonlinear simulation were found by computing
the initial cartesian positions from Equations (112)–(114) at u ¼ u0,

xðu0Þ ¼2a3ðu0Þ þ b1ðu0Þ ð138Þ
yðu0Þ ¼q3ðu0Þ þ 2a1ðu0Þ ð139Þ
zðu0Þ ¼b2ðu0Þ ð140Þ

and the initial rates from Equations (118)–(120),

_xðu0Þ ¼a1ðu0Þ � vð1Þx ðu0Þ ð141Þ
_yðu0Þ ¼ � 3a3ðu0Þ � 2b1ðu0Þ � vð1Þy ðu0Þ ð142Þ
_zðu0Þ ¼a2ðu0Þ � vð1Þz ðu0Þ ð143Þ

These were then rotated and translated into the inertial frame for simulation.
All relative orbit simulations are about a nominal, circular reference orbit of
750 km altitude. Except for the no-drift condition on a3ðu0Þ, the initial
conditions for all the other contact epicyclic elements were set to zero (with
the exception of the circular, equatorial orbit).

The first simulation in Figure 2 is a nonlinear simulation of the circular
equatorial orbit described earlier. Again, the canonical J2 equations show
that the vehicle remains at the origin. In this nonlinear simulation, the rel-
ative motion has a small radial oscillation of 5 m and a slow, in-track drift of
roughly 50 m per orbit. This is due to the neglected OðJ22Þ term in the angular
velocity expression of the drifting frame.

Figures 3 and 4 show a small relative motion trajectory about the origin of
the J2 drifting, Euler–Hill like frame for a low inclination (28:5�) reference
orbit. A J2 invariant formation could be formed by modifying u0 for each of
the satellites and thus distributing them about the trajectory. Note the change
in the orbit from the elliptical solution of the C–W equations. Also observe
how effective the no-drift condition is at forming a bounded orbit even in the
nonlinear case. Figure 5 displays the difference between the first-order
solution and the exact nonlinear simulation. This error consists of two effects,
a very slight drift (almost zero for this inclination) and an oscillatory dif-
ference of increasing amplitude, at roughly the orbit rate, that grows to
almost 1 km in-track after 5 orbits. This oscillatory error is deceptive,
however, as it is primarily due to a difference in the orbit rates of the line-
arized and nonlinear trajectories (of order J22) and thus differencing the tra-
jectories results in a phasing error that grows with each orbit. Alternatively,
we looked at how close the two relative orbits were geometrically. Such a
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Figure 2. Nonlinear simulation of stationary relative motion trajectory in 750 km equatorial

reference orbit.
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Figure 3. Nonlinear simulation of bounded relative motion orbit with J2 Perturbations in 28.5
degree inclination, drifting reference orbit.
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Figure 4. X–Y projection of relative motion orbit with J2 perturbations in 28.5 degree
inclination, drifting reference orbit.
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Figure 5. A comparison of the x–y projection of the relative motion orbit using the linearized,
canonical equations and a full, inertial, nonlinear simulation over 5 orbits for a 28.5 degree
reference orbit.
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Figure 6. A comparison of the relative displacement between the linearized trajectory and that
from a full, inertial, nonlinear simulation over 5 orbits for a 28.5 degree reference orbit.
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Figure 7. Nonlinear simulation of bounded relative motion trajectory in a sun-synchronous
reference orbit.
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Figure 8. x-y projection of relative motion orbit with J2 perturbations in sun-synchronous

reference orbit.
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Figure 9. A comparison of the x–y projection of the relative motion orbit using the linearized,

canonical equations and a full, inertial, nonlinear simulation over 5 orbits for a sun-syn-
chronous reference orbit.
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Figure 10. A comparison of the relative displacement between the linearized trajectory and that
from a full, inertial, nonlinear simulation over 5 orbits for a sun-synchronous reference orbit.
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Figure 11. Nonlinear simulation of bounded, minimal drift relative motion trajectory in a
sun-synchronous reference orbit.
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difference of the x–y projection is displayed in Figure 6. The small, average
OðJ22Þ induced in-track drift is now on the order of only 4–5 m per orbit.

Figures 7 and 8 show the nonlinear simulation for a relative motion tra-
jectory with the no-drift condition about a sun-synchronous reference orbit.
This orbit could be used for a sun-synchronous satellite formation. Figure 9
shows the directly differenced error between this and the linear, canonical
trajectory and Figure 10 shows the geometric difference. Unlike the low
inclination orbit, here we see a rather large average drift due to the OðJ22Þ
terms of more than 20 m/orbit. Remarkably, that drift can be fairly easily
reduced through a simple iteration of the nonlinear initial conditions. By
using the no-drift condition as a starting point, we find a slight modification
of the relative motion initial in-track velocity that significantly reduces the
in-track drift in only 5 iterations. By changing the initial in-track velocity by
just less than 0.006 m/s we can reduce the orbit drift to less than 5 m/orbit.
Such an orbit is shown in Figure 11. The geometric difference between this
nonlinear simulation and the original canonical, linearized orbit is shown in
Figure 12.3
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Figure 12. A comparison of the relative displacement between the linearized trajectory and

that for a minimal drift relative motion over 5 orbits for a sun-synchronous reference orbit.

3For some high inclination orbits the O
�

J22
�

drift can become as high as 50–60 m per

orbit. This can be reduced to the same low level via iteration.
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6. Conclusions

This paper presented a new Hamiltonian framework for the analysis of
spacecraft motion relative to a circular orbit in terms of canonical relative
motion elements we termed ‘epicyclic’ elements. These epicyclic elements
(and the equivalent ‘contact epicyclic’ elements) are constants of the linear-
ized motion describing the relative satellite trajectory, similar to the orbital
elements that describe motion in the two-body problem. These new elements
are easily expressed in terms of the cartesian or polar initial conditions of the
satellite motion. The value of this Hamiltonian approach is in the straight-
forward variation of parameters equations describing the change of the ele-
ments over time in the presence of perturbations or control. All equations are
expressed entirely in the relative motion frame of reference, where most
measurements are taken and where trajectory specification is most natural.
While there are many applications of this approach, in this paper we calcu-
lated the effect of just one example perturbation–the J2 Earth zonal har-
monic. We were able to find very simple expressions for the relative motion
and straightforward conditions for J2-invariant orbits.

Appendix A.

The Hamilton–Jacobi equation is a methodology for solving integrable
dynamics problems via canonical transformations. We briefly describe the
derivation here utilizing Goldstein (1980). Given a set of generalized coor-
dinates ðq; _qÞ and a Lagrangian L, the canonical momenta are found via

pi ¼
@L
@qi

The Hamiltonian is then given by the Legendre transformation:

Hðq; p; tÞ ¼ _qipi �Lðq; _q; tÞ
The n second order equations of motion for the problem can then be alter-
natively written as 2n first order equations for _q and _p (Hamilton’s equa-
tions):

_qi ¼
@H
@pi

_pi ¼�
@H

@qi

These canonical coordinates are not unique. If we consider a transformation
of the phase space to a new set of coordinates Qiðq; p; tÞ and Piðq; p; tÞ, we can
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ask for the class of transformations for which the new coordinates also satisfy
Hamilton’s equations on the new Hamiltonian KðQ;P; tÞ ¼ HðqðQ;P;HÞ;
pðQ;PÞ; tÞ. Such a transformation is called canonical. A common approach
to the transformation is via generating functions. For some function
F2ðq;P; tÞ, a transformation is canonical provided that

pi ¼
@F2

@qi

Qi ¼
@F2

@Pi

K ¼Hþ @F2

@t

The Hamilton–Jacobi problem comes from asking for the special canonical
transformations for which K 	 0 where the new canonical coordinates are
constants of the motion. If such a transformation can be found, the equations
of motion have been solved. The generating function for such a transfor-
mation is called Hamilton’s Principle Function, Sðq; a; tÞ, where ai is the new
constant canonical momentum, Pi. This generating function can be found by
setting the expression for K equal to zero while substituting from the
transformation equations:

H q1; . . . ; qn;
@S

@q1
; . . . ;

@S

@qn
; t

� �

þ @S
@t
¼ 0

This is known as the Hamilton–Jacobi equation for S. Note that in the
special case where H is independent of time it is a constant of the motion and
can be set equal to a1. In this case, the HJ equation separates and we write
Hamilton’s principle function in terms of Wðqi; aiÞ, called Hamilton’s char-
acteristic function, and time

Sðq1; . . . ; qn; a1; . . . ; an; tÞ ¼Wðq1; . . . ; qn; a1; . . . ; anÞ � a1t

The Hamilton–Jacobi equation for W then reduces to:

H q1; . . . ; qn;
@W

@q1
; . . . ;

@W

@qn

� �

¼ a1
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