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Abstract. This paper investigates the long-period and secular dynamics of a satellite about an

oblate primary while relieving the assumption that the perturbed orbit is instantaneously
parameterized by osculating Keplerian orbits. The inherent freedom obtained by transforming
the orbital dynamics from the Cartesian inertial space to the orbital elements space, termed

gauge freedom, is utilized to nullify four planetary equations. It is shown that there exists an
orbit representation in which the mean non-osculating perigee is stable under the oblateness
perturbation and that nodal precession, apsidal rotation and epoch drift may be simulta-

neously nullified on the expense of secular eccentricity and inclination variations. These
observations considerably expand the standard description of J2-perturbed motion using
mean osculating orbital elements, which predicts secular variation nullification of semi-major

axis, eccentricity and inclination only.

Key words: oblateness, Lagrange’s equation, orbital perturbations, orbital elements, gauge
invariance

1. Introduction

Lagrange’s planetary equations (Euler, 1748; Lagrange, 1809) (LPEs) have
been used in celestial mechanics and astrodynamics for well over two cen-
turies. These time-dependent, ordinary differential equations describe the
variation of the classical orbital elements due to a disturbing potential input.
From the mathematical standpoint, these equations map the orbital
dynamics from the position-velocity space to the orbital elements space
through variations-of-parameters (VOP), a general and powerful technique
for solving non-linear differential equations, developed by Euler (1748) and
later enhanced by Lagrange (1809).

What can be contributed to this long-standing problem? The mathemat-
ical development leading to the re-formulation of the problem dynamics in
terms of orbital elements gives rise to an underdetermined system, meaning
that extra constrains should be imposed to solve for the excess freedom.

To eliminate this freedom, Lagrange and most of his followers assumed
that the velocity vector of the perturbed orbit equals the velocity vector of the
generating Keplerian orbit, thus imposing three additional constraints
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known as the Lagrange constraints. The orbital elements resulting from this
assumption are known as osculating orbital elements (Battin, 1999), because
the trajectory in the inertial configuration space is always tangential to an
‘instantaneous’ ellipse (or hyperbola) defined by the ‘instantaneous’ values of
the time-varying orbital elements. This means that the perturbed physical
trajectory would coincide with the Keplerian orbit that the body would
follow if the perturbing force was to cease instantaneously.

While the Lagrange constraint greatly simplifies the analysis, it avoids
tackling the hidden symmetry of the equations. The generalized constraint
may be utilized as a user-defined tuning mechanism for the planetary equa-
tions, leading to possible simplification of numerical integration and to a
better understanding of the underlying problem dynamics.

This observation has been made by a few researchers (Brouwer and
Clemence, 1961). Recently, there has been a marked increase in investigation
of generalizations to the Lagrange constraint as Efroimsky et al. have pub-
lished a number of key works in this area (Efroimsky, 2002; Efroimsky and
Goldreich, 2003, in press; Newman and Efroimsky, 2003). The resulting
planetary equations were termed gauge-generalized equations, and the
underlying symmetry was referred to as gauge symmetry or gauge freedom, a
terminology adopted from the field of electrodynamics.

In this paper, we extend the existing results by presenting an averaged
form of the gauge-generalized planetary equations. This representation is
beneficial for studying secular and long-period effects on the orbital dynamics
due to a first-order small perturbing potential. The resulting equations yield
gauge-generalized planetary equations with mean non-osculating classical
orbital elements as the state variables. We then utilize the equations in order
to develop a model of satellite motion about an oblate planet, taking into
account only the first zonal harmonics (J2).

J2-perturbed motion has been thoroughly studied in the existing literature,
both from the artificial and natural satellite standpoints. A myriad of works
have been published on analytic methods (Palmer and Hashida, 2001),
oblateness-perturbed relative motion (Koon and Murray, 2001; Schaub and
Alfriend, 2001), numerical integration (Hadjifotinou, 2000) and even utili-
zation of oblateness for constraining the rotation rate of extra-solar planets
(Seager and Hui, 2002). However, the bulk of the works thus far have utilized
osculating orbital elements. The models herein are developed using non-
osculating elements. The excess freedom introduced by using the gauge-
generalized equations is used to identically nullify three planetary equations
in addition to the semi-major axis rate. We have thus managed to nullify four
planetary equations whereas in the osculating case only three orbital element
rates are nullified (semi-major axis, eccentricity and inclination). We illustrate
the methodology by presenting oblateness-perturbed planetary equations
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with a stable perigee as well as planetary equations in which the nodal pre-
cession, apsidal rotation and drift of the epoch are cancelled on the expense
of eccentricity and inclination variation.

2. Background

Consider the equations of motion of a Keplerian two-body problem, given by

€rþ lr
r3

¼ 0; ð1Þ

where r 2 R3
0 is the position vector in some inertial coordinate system,

r ¼ krk, R3
0 ,R3nf0g is the Cartesian configuration space and l is the

gravitational constant. In order to solve Equation (1), we first write the
position vector in an auxiliary dextral perifocal coordinate system, P:

rP ¼
r cos f
r sin f
0

24 35; ð2Þ

where r is given by the conic equation

r ¼ að1� e2Þ
1þ e cos f

; ð3Þ

a is the semi-major axis, e is the eccentricity, f ¼ fða; e;M0; tÞ is the true
anomaly and M0 is the mean anomaly at epoch. The perifocal velocity vector
is obtained by writing

_rP ¼ _f
dr

df

� �
P

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l

a3ð1� e2Þ3

s
ð1þ e cos f Þ2 dr

df

� �
P

; ð4Þ

which yields

_rP ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffi
l

að1�e2Þ

q
sin fffiffiffiffiffiffiffiffiffiffiffiffi

l
að1�e2Þ

q
ðeþ cos f Þ
0

2664
3775: ð5Þ

In order to obtain r, the inertial position vector, and _r, the inertial velocity
vector, we need to use a rotation matrix from perifocal to inertial coordi-
nates, TI

P 2 SOð3Þ. One such transformation is given by (Bate and White,
1971)

TI
Pði;X;xÞ¼

cðXÞcðxÞ� sðXÞsðxÞcðiÞ �cðXÞsðxÞ� sðXÞcðxÞcðiÞ sðXÞsðiÞ
sðXÞcðxÞþ cðXÞsðxÞcðiÞ �sðXÞsðxÞþ cðXÞcðxÞcðiÞ �cðXÞsðiÞ

sðxÞsðiÞ cðxÞsðiÞ cðiÞ

24 35;
ð6Þ
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where i is the inclination, X is the longitude of the ascending node, x is the
argument of periapsis and we used the compact notation cð�Þ ¼ cosð�Þ,
sð�Þ ¼ sinð�Þ. Transforming into inertial coordinates, using Equations (2) and
(6), we obtain the general solution to Equation (1),

r ¼ TI
PðX;x; iÞrPða; e;M0; tÞ ¼ fða; e; i;X;x;M0; tÞ; ð7Þ

where M0 is the mean anomaly at epoch. In a similar fashion, the expression
for the inertial velocity is given by

_r ¼ TI
PðX;w; iÞ_rPða; e;M0; tÞ ¼ gða; e; i;X;x;M0; tÞ: ð8Þ

Thus, the inertial position and velocity depend upon time and the classical
orbital elements,

a ¼ ½a; e; i;X;x;M0�T 2 M; ð9Þ
where M ¼ O� S4, O � R2 is an open set in R2, and S4 is the 4-sphere.

The above solutions were obtained for the nominal, undisturbed Keple-
rian motion. When a disturbing specific force, d, is introduced into Equation
(1), we have

€rþ lr
r3

¼ d: ð10Þ

In order to solve for the resulting non-Keplerian motion, Euler (1999) and
Lagrange (2002) have developed the variation-of-parameters procedure
(which is a general and powerful method for the solution of non-linear dif-
ferential equations). In essence, the method suggests to turn the constants of
the unperturbed motion, which in our case are the classical orbital elements,
into functions of time, yielding a modified solution of the form

r ¼ fðaðtÞ; tÞ: ð11Þ
Taking the time derivative of Equation (11) yields the relationship

_r ¼ @f

@t
þ Jfða; tÞ _a ¼ gðaðtÞ; tÞ þ Jfða; tÞ _a; ð12Þ

where Jfða; tÞ ¼ @f=@a. In order to obtain the differential equations describ-
ing the temporal change of the classical orbital elements, known as Lag-
range’s planetary equations (LPEs), Equation (12) is differentiated and
substituted into Equation (10). This operation results in a 12-dimensional
system of differential equations for a and _a. However, there are only three
degrees of freedom. Hence, the resulting system will be under-determined,
meaning that three extra conditions can be imposed. Lagrange chose to
impose the non-holonomic constraint

Jfða; tÞ _a ¼ 0; ð13Þ
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which is also known as the Lagrange constraint. Mathematically, this
restriction confines the dynamics of the orbital state space to a 9-dimensional
submanifold of the 12-dimensional manifold M� R6. More importantly,
this freedom reflects an internal symmetry in the mapping ðr; _rÞ7!ða; _aÞ,
which is inherent to Lagrange’s planetary equations.

Physically, the Lagrange constraint postulates that the trajectory in the
inertial configuration space is always tangential to an ‘instantaneous’ ellipse
(or hyperbola) defined by the ‘instantaneous’ values of the time-varying
orbital elements aðtÞ, meaning that the perturbed physical trajectory would
coincide with the Keplerian orbit that the body would follow if the per-
turbing force was to cease instantaneously. This instantaneous orbit is called
osculating orbi. Accordingly, the orbital elements which, satisfy the Lagrange
constraint are called osculating orbital elements.

Although the Lagrange constraint simplifies the calculations and
can be interpreted using Keplerian dynamics, it is completely arbitrary.
The generalized form of the Lagrange constraint may be therefore written
as

JFða; tÞ _a ¼ qða; _a; tÞ; ð14Þ

where q : M� R6 � Rþ ! R3 is an arbitrary function of the classical orbital
elements, their-time derivatives and time. This important observation has
been made by a few researchers (Brouwer and Clemence, 1961). Recently,
Efroimsky et al. have published important works on planetary equations
with a generalized Lagrange constraint (Efroimsky, 2002; Efroimsky and
Goldreich, 2003, in press; Newman and Efroimsky, 2003). They termed the
underlying symmetry gauge symmetry and the constraint function q gauge
function, which are terms taken from the field of electrodynamics. The gauge
q ¼ 0 is termed the Lagrange gauge.

The use of a generalized Lagrange constraint gives rise to non-osculating
orbital elements, which relate to the inertial position and velocity based upon
Equations (11) and (12), respectively. Thus, although the description of the
physical orbit in the inertial Cartesian configuration space remains invariant
to a particular selection of a gauge function, its description in the orbital
elements space depends on whether osculating or non-osculating orbital
elements are used.

This fact is illustrated by Figure 1, which depicts a perturbed Keplerian
orbit in an inertial reference frame bX bY bZ and an instantaneous velocity vector
v. The velocity vector defines an osculating ellipse at the point P. Yet, point P
may lie on another, non-osculating ellipse. We shall show in the forthcoming
sections that the use of non-osculating elements is beneficial for studying the
dynamics of J2-perturbed orbits.

ANALYSIS OF J2-PERTURBED MOTION 293



3. Gauge-Generalized Averaged Planetary Equations

When osculating orbital elements are used, the LPEs may be compactly
written as

_a ¼ ½JfðaÞP�Td ð15Þ
where P is the 6�6 skew-symmetric Poisson matrix (Battin, 1999), given by

PT ¼

0 0 0 0 0 2
na

0 0 0 0 �
ffiffiffiffiffiffiffiffi
1�e2

p

na2e
1�e2

na2e

0 0 0 � 1

na2
ffiffiffiffiffiffiffiffi
1�e2

p
sin i

cot i

na2
ffiffiffiffiffiffiffiffi
1�e2

p 0

0 0 1

na2
ffiffiffiffiffiffiffiffi
1�e2

p
sin i

0 0 0

0
ffiffiffiffiffiffiffiffi
1�e2

p

na2e
� cot i

na2
ffiffiffiffiffiffiffiffi
1�e2

p 0 0 0

� 2
na � 1�e2

na2e
0 0 0 0

266666666664

377777777775
:

ð16Þ
Assuming that the disturbing specific force is conservative and depends on
the position vector only, we may substitute d in Equation (15) by the gradient
of a disturbing potential, denoted by R, such that d ¼ @R=@r. Since

rR ¼ @R

@a
¼ JTf ðaÞ

@R

@r
; ð17Þ

the LPEs in osculating orbital elements become

_a ¼ PTrR: ð18Þ

X

Y

Z

v

P

Figure 1. A perturbed Keplerian orbit (thick curve). The position at P can be described by an
osculating ellipse, tangent to the instantaneous velocity vector v (dashed), or a non-osculating
ellipse (thin line).
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A similar procedure can be carried out in order to derive the LPEs in non-
osculating orbital elements using the gauge-generalized constraint (14). Ef-
roimsky et al. (Efroimsky, 2002; Newman and Efroimsky, 2003) have shown
that in this case the LPEs are

_a ¼ PT½rR� ðJTg qþ JTf _qÞ�; ð19Þ

where Jg ¼ @g=@a, _q ¼ Jq _a and Jq ¼ @q=@a.
We shall now assume that the gauge function q is a function of orbital

elements only,

q : M ! R3 ¼ qðaÞ; ð20Þ
and derive the averaged form of Equation (19) using the method of Brouwer
and Clemence (1961). Essentially, the averaging procedure yields expressions
for the secular effect of first-order perturbations on an orbit assuming that
the variations of orbital elements during the averaging is of second order.
The resulting orbital elements are called mean orbital elements.

The averaging of the perturbing potential is carried out as follows (Battin,
1999):

�R ¼ hRi ¼ 1

2p

Z 2p

0

R dM ð21Þ

or, alternatively,

�R ¼ 1

2p

Z 2p

0

n

h
Rr2 df; ð22Þ

where n ¼
ffiffiffiffiffiffiffiffiffiffi
l=a3

p
is the mean motion and h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lað1� e2Þ

p
is the orbital

angular momentum. The mean value of some vector p ¼ ½p1; p2; p3�T is ob-
tained by performing the averaging (22) component-wise, hpi ¼ ½�p1; �p2; �p3�T,

To perform the averaging procedure, we assume that the perturbing po-
tential is first-order small, that is,

R ¼ e eR; e � 1; ð23Þ
and in addition, that the (arbitrary) gauge function satisfies

q ¼ e~q; e � 1: ð24Þ
These assumptions guarantee that to first order, the mean orbital elements
remain unchanged in the interval f ¼ ½0; 2p�. Hence, the averaged differential
equations for the mean orbital elements are obtained by substituting

a ¼ �a; _a ¼ _�a ð25Þ
into the planetary equations. If we now substitute Equation (25) into
Equation (19) and apply the averaging (22), we shall obtain differential
equations for the mean non-osculating orbital elements:
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_�a ¼ PTð�aÞ½r �Rð�aÞ � hJTg qi � hJTf _qi�: ð26Þ
Based on the relationship (25), the interchangeability of the integration and
differentiation operators and assumption (20), we obtain the equalities

hJTg qi ¼ hJTg ihqi ¼
@hTI

P _rPi
@�a

�q: ð27Þ

Substituting Equations (5) and (6) into Equation (27) and performing the
averaging yields

hTI
P _rPi ¼ _�r ¼ 0: ð28Þ

In a similar manner,

hJTf _qi ¼ hJTf ih _qi ¼
@hTI

PrPi
@�a

h _qi; ð29Þ

where

hTI
PrPi ¼ �r ¼ 3

2
ae

sinX sinx cos i� cosX cosx
� cosX sinx cos i� sinX cosx

� sin i sinx

24 35 ð30Þ

and the elements of Jfð�aÞ ¼ @�r=@�a are given by

ð�JfÞ1;1 ¼ e½sðXÞsðxÞcðiÞ� cðXÞcðxÞ�; ð�JfÞ1;2 ¼ a½sðXÞsðxÞcðiÞ� cðXÞcðxÞ�;

ð�JfÞ1;3 ¼�aesðXÞsðxÞs; ð�JfÞ1;4 ¼ ae½sðXÞcðxÞþ cðXÞsðxÞcðiÞ�ðiÞ;

ð�JfÞ1;5 ¼ ae½cðXÞsðxÞþ sðXÞcðxÞcðiÞ�;

ð�JfÞ2;1 ¼�e½sðXÞcðxÞþ cðXÞsðxÞcðiÞ�;

ð�JfÞ2;2 ¼�a½sðXÞcðxÞþ cðXÞsðxÞcðiÞ�;

ð�JfÞ2;3 ¼ ae½cðXÞsðxÞsðiÞ�; ð�JfÞ2;4 ¼�ae½cðXÞcðxÞ� sðXÞsðxÞcðiÞ�;

ð�JfÞ2;5 ¼�cðXÞcðxÞcðiÞ�;�sðXÞsðxÞ; ð�JfÞ3;1 ¼�esðxÞsðiÞ;

ð�JfÞ3;2 ¼�asðxÞsðiÞ; ð�JfÞ3;3 ¼�aesðxÞcðiÞ;

ð�JfÞ3;5 ¼�cðxÞsðiÞ; ð�JfÞ1;6 ¼ ð�JfÞ2;6 ¼ ð�JfÞ3;6 ¼ ð�JfÞ3;4 ¼ 0:

ð31Þ

The calculation of h _qi is a bit more subtle, due to the fact that _q ¼ _qða; _a; f Þ.
To begin, we note that based on assumption (20), @q=@t ¼ 0, so that

_q ¼ JqðaÞ
@a

@t
¼ JqðaÞ

@a

@f
_f ¼ JqðaÞ

@a

@f

h

r2
; ð32Þ
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where JqðaÞ ¼ @q=@a. Substituting into (22) we obtain

h _qi ¼ JqðaÞ
n

2p

Z 2p

0

@a

@f
df ¼ QðaÞ ¼ Qð�aÞ: ð33Þ

Substituting Equations (28) and (33) into Equation (26) we obtain a sim-
plified set of gauge-generalized, averaged, planetary equations:

_�a ¼ PTð�aÞ½r �Rð�aÞ � JTf ð�aÞQð�aÞ�; ð34Þ

where Jfð�aÞ is given by Equation (31).
We may utilize Equation (34) in order to find a vector function Qð�aÞ that

will identically nullify (at most) three averaged planetary equations for al-
most all perturbing potentials. This is an important observation, as it may
significantly simplify orbit integration procedures (e.g. replace Cowell’s
method) and give new insight into the perturbed orbital dynamics. In the next
section, we shall derive gauge-invariant equations for a J2-perturbed orbit
using mean non-osculating orbital elements, and illustrate how to find a
gauge function that identically nullify various combinations of three plane-
tary equations.

Alternatively, one may wish to find the least-squares solution to Equation
(26), given by

Q ¼ ðJTf Þ
þ r �R; ð35Þ

where ð�Þþ denotes the Moore-Penrose generalized inverse of a rectangular
matrix. The meaning of such a solution would be a ‘minimum-dirt’ param-
etrization of a perturbed orbit in the least-squares sense.

4. Mean Non-Osculating J2 Equations

The mean perturbing potential due to an oblate primary is obtained by
expanding the perturbing potential into a Fourier series in the mean anomaly
M and averaging the first term. This procedure yields (Battin, 1999):

�R ¼
lJ2r2eqð2� 3 sin2 iÞ

4ð1� e2Þ
3
2

; ð36Þ

where req is the equatorial radius. Computing the gradient with respect to the
mean orbital elements yields
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r �R ¼
3lJ2r2eq

4a3ð1� e2Þ
3
2

�ð2� 3 sin2 iÞ
a

eð2� 3 sin2 iÞ
ð1� e2Þ
� sin 2i

0

0

0

26666666666664

37777777777775
: ð37Þ

We note that since @ �R=@M0 ¼ 0 and @f=@M0 ¼ 0, the mean value of the
semi-major axis remains unchanged regardless of any particular selection of a
gauge function:

_�a ¼ 0: ð38Þ
Selecting the Lagrange gauge rate Q ¼ 0 shows that the mean values of the
osculating eccentricity and inclination are also invariant under the action of
an oblateness perturbation. However, Q ¼ 0 is merely a special solution to
the set of equations _�e ¼ 0, _�i ¼ 0. The gauge-generalized solution is obtained
by substituting Equations (31) and (37) into Equation (34) and solving the
resulting equations

_�e ¼ � 1� e2

na2e

@�f

@M0

� �T
Qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

na2e

@�f

@x

� �T
Q ¼ 0; ð39Þ

_�i ¼ � cos i

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin i

@�f

@x

� �T
Qþ 1

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin i

@�f

@X

� �T
Q ¼ 0; ð40Þ

for Q. Letting Q ¼ ½Q1;Q2;Q3�T, the general solution to the under-deter-
mined set of Equations (39) and (40) is obtained as

Q ¼
�Q3ðcos i sinX tanx� cosXÞ

tanx sin i
Q3ðcos i cosX tanxþ sinXÞ

tanx sin i
Q3

266664
377775: ð41Þ

The singularity at x ¼ 0; p; 2p and i ¼ 0;p is removable by selecting a dif-
ferentiable Q3 satisfying Q3 ¼ Q3ðx; iÞ and Q3ðx ¼ 0; i ¼ 0Þ ¼ 0, so that
L’Hospital’s rule may be applied (e.g. Q3 ¼ c sinx sin i with c ¼ const.)

The redundant degree of freedom may be now used to nullify an additional
planetary equation. However, we must first verify that the resulting set of
equations is solvable for Q. Generally speaking, one may try and nullify any
of the 10 combinations resulting from selecting any 3 out of the 5 remaining
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planetary equations. However, not all combinations are solvable for Q. The
following four combinations do not admit a solution:

_�e ¼ 0; _�i ¼ 0; _�X ¼ 0;

_�i ¼ 0; _�X ¼ 0; _�M0 ¼ 0;

_�i ¼ 0; _�X ¼ 0; _�x ¼ 0;

_�e ¼ 0; _�x ¼ 0; _�M ¼ 0:

ð42Þ

The insolvability of the above combinations stems from the fact that the
matrix of coefficients of the resulting linear system of equations is singular.
The solution set is therefore the empty set.

The subsequent discussion illustrates a few solutions to some admissible
combinations of planetary equations.

4.1. NULLIFYING THE APSIDAL LINE PRECESSION

The additional degree of freedom emerging from solution of Equations (39)
and (40) may be used, e.g., to nullify the mean rate of change of the argument
of perigee by solving the additional equation

_�x ¼ � cos i

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin i

�3 sin 2i� @�f

@i

� �T
Q

( )

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

na2e

3eð2� 3 sin2 iÞ
ð1� e2Þ � @�f

@e

� �T
Q

( )
¼ 0:

ð43Þ

Solving Equations (39), (40) and (43) for Q gives

Q ¼
lJ2r2eqe½1� 5c2ðiÞ�
4a4ð1� e2Þ5=2

�

2½cðXÞcðxÞ � sðXÞsðxÞcðiÞ�
sð2xÞcðiÞ½1� 2c2ðXÞ� þ sð2XÞ½c2ðxÞc2ðiÞ þ c2ðiÞ þ 1

sðXÞsðxÞcðiÞ � cðXÞcðxÞ
2sðxÞsðiÞ

26664
37775: ð44Þ

This gauge function rate is regular, integrable 8�a 2 Mnfi;X;x :
cðiÞsðXÞsðxÞ ¼ cðXÞcðxÞg and the normalized gauge acceleration magnitude
satisfies kQka4=ðlr2eqÞ � OðeJ2Þ. This result, however, should be judiciously
handled. It is tempting to think that since Q consists of constant and periodic
terms, the averaged gauge function itself will grow linearly with time. This is
generally not true, because
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hqi 6¼
Z
t

_�q dt: ð45Þ

Consequently, in order to satisfy assumption (24), we have to show that
the gauge velocity, normalized by some characteristic velocity, is at most of
order J2; otherwise, the above analysis may not hold because the gauge
function will violate the smallness assumption. This order-of-magnitude
analysis, performed in Section 4.3, shows that the normalized gauge velocity
for the current example is of order J2, and hence our enabling assumption
holds.

The remaining planetary equations, using the gauge function derivative
(44) and the mean non-osculating orbital elements as state variables, are as
follows:

_�X ¼ � 3

2
J2n

req
p

� �2

cos i; ð46Þ

_�M ¼ 3

2
J2

req
p

� �2 nffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p ½cos2 iðe2 þ 4Þ � 1�; ð47Þ

where p ¼ að1� e2Þ.
Interestingly, Equation (46) is identical to the mean nodal drift equation

obtained with the Lagrange gauge ðq ¼ 0Þ. The equation for the mean drift of
the mean anomaly at epoch calculated using the Lagrange gauge is generally
not equal to expression (47) and is given by

_�M0 ¼
3

4
J2

req
p

� �2

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ð3 cos2 i� 1Þ: ð48Þ

The gauge symmetry has therefore served as a coordinate transformation
which nullified the apsidal line precession at the expense of modifying
the perigee passage time. This makes physical sense, as both �x and �M0 are
angles defined in the orbital plane. The spacecraft inertial position is of
course invariant to whether the entire orbital plane is rotating or only the
timing of perigee passage is changing. Thus, the gauge freedom can be viewed
as a transformation from an orbit-fixed frame rotating at rate _�x) to a
satellite-fixed frame with the appropriate correction of the mean anomaly
rate.

To summarize, we have managed to find a gauge function rate, given by
Equation (44), that identically nullifies the rate of change of the argument of
periapsis in addition to nullifying the mean rates of the eccentricity and
inclination. While the line of apsides always regresses or advances (excluding
the critical inclination) using osculating orbital elements, the formulation
using non-osculating elements yields a dynamical model in which the line of
apsides is stationary.

PINI GURFIL300



In addition, the above representation permits nullification of �M0 at critical
inclination angles that are eccentricity-dependent. To see this, we solve
Equation (47) for i and get

icrit ¼ cos�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4þ e2

r !
; ð49Þ

meaning that for each eccentricity there is a direct and a retrograde orbit for
which the only secular change is the drift of the line of nodes.

Furthermore, using the gauge-generalized representation, a polar orbit
ði ¼ 90�Þ constitutes an invariant manifold in the non-osculating orbital
elements state-space, implying that a polar orbit will show merely a secular
change in the periapsis passage time. This invariant manifold does not exist
in the mean osculating orbital elements parametrization because in that case
a polar orbit will still induce an apsidal line precession.

4.2. NULLIFYING THE NODAL, APSIDAL AND EPOCH RATES

As an additional example, we may eliminate the nodal precession, the apsidal
rotation and the epoch variations by nullifying the mean angular rates _�X, _�x
and _�M0, respectively. The resulting equations are Equation (43) and

_�X ¼ 1

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin i

�3 sin 2i� @�f

@i

� �T
Q

( )
¼ 0; ð50Þ

_�M0 ¼�1� e2

na2e

3eð2�3sin2 iÞ
ð1� e2Þ � @�f

@e

� �T
Q

( )
� 2

na
�3ð2�3sin2 iÞ

a
� @�f

@a

� �T
Q

( )
ð51Þ

Denoting again Q ¼ ½Q1;Q2;Q3�T, the gauge function rate solving the system
of equations (43), (50) and (51) is given by

Q1¼�2lJ2r
2
eq �5e2sðXÞcðxÞcðXÞcðiÞ5�2e2cðiÞ4sðXÞsðxÞsðiÞcðXÞcðxÞ2
�

�2e2cðiÞ2sðXÞsðxÞsðiÞcðXÞcðxÞ2�2e2cðiÞ2sðxÞcðxÞ2cðXÞ2

þ6e2cðiÞ4sðxÞcðxÞ2cðXÞ2� e2sðXÞcðxÞ3cðXÞcðiÞ
þ2e2sðXÞcðxÞ3cðXÞcðiÞ3

þ2cðiÞ2sðxÞcðXÞ2þ2sðiÞcðxÞ3cðiÞþ8sðiÞcðxÞcðiÞ3

�8sðiÞcðxÞ3cðiÞ3þ2cðiÞ4sðxÞ�2cðiÞ2sðxÞ
�2sðXÞsðxÞsðiÞcðXÞþ3e2cðiÞ2sðxÞcðXÞ2

�5e2cðiÞ4sðxÞcðXÞ2þ2cðxÞe2sðiÞcðiÞ3

�2cðxÞ3e2sðiÞcðiÞ3þe2cðiÞ2sðxÞcðxÞ2�3e2cðiÞ4sðxÞcðxÞ2
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þ4sðiÞcðxÞcðiÞcðXÞ2

�4sðiÞcðxÞ3cðiÞcðXÞ2�16sðiÞcðxÞcðiÞ3cðXÞ2

þ16sðiÞcðxÞ3cðiÞ3cðXÞ2þ2cðXÞcðxÞsðXÞcðiÞ3�2cðXÞcðxÞsðXÞcðiÞ5

�2cðiÞsðiÞcðxÞ�3e2cðiÞ2sðxÞþ5e2cðiÞ4sðxÞ�2cðiÞ4sðxÞcðXÞ2

þ3e2sðXÞcðxÞ3cðXÞcðiÞ5þe2sðXÞcðxÞcðXÞcðiÞ
�4cðxÞe2sðiÞcðiÞ3cðXÞ2þ4cðxÞ3e2sðiÞcðiÞ3cðXÞ2

þ2e2cðiÞ2sðXÞsðxÞsðiÞcðXÞþ2sðXÞsðxÞsðiÞcðXÞcðxÞ2

þ8cðiÞ2sðXÞsðxÞsðiÞcðXÞ�6cðiÞ2sðXÞsðxÞsðiÞcðXÞcðxÞ2

�8cðiÞ4sðXÞsðxÞsðiÞcðXÞcðxÞ2 = 4cðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p
a4esðxÞ

��
ðe4cðXÞcðxÞcðiÞ�e4sðXÞsðxÞ�cðXÞcðxÞcðiÞsðXÞsðxÞ

�
ð52Þ

Q2 ¼� 2lJ2r
2
eq 2cðXÞcðiÞ4 � 2cðXÞcðiÞ2
�

� 3cðiÞ4e2cðXÞcðxÞ2 þ 2cðiÞ2e2sðiÞsðXÞcðxÞ2

þ 8sðxÞsðiÞcðXÞcðxÞcðiÞ3 þ 2sðXÞsðiÞ � 2sðiÞsðXÞcðxÞ2

þ 3e2sðXÞcðxÞsðxÞcðiÞ3 � 2sðxÞsðiÞcðXÞcðxÞcðiÞ
þ 8cðiÞ2sðiÞsðXÞcðxÞ2 � 2cðiÞ2e2sðiÞsðXÞ þ cðiÞ2e2cðXÞcðxÞ2

þ 2sðxÞe2sðiÞcðXÞcðxÞcðiÞ3

� e2sðXÞcðxÞsðxÞcðiÞ � 8cðiÞ2sðiÞsðXÞ � 3cðiÞ2e2cðXÞ
þ5cðiÞ4e2cðXÞ

�
= 4cðiÞeðe4 � 1Þa4

ffiffiffiffiffiffiffiffiffiffiffiffi
l� e2

p
sðxÞ

� �
;

(53)
Q3 ¼ 2lJ2r

2
eqðe2cðxÞcðXÞcðiÞ

2 þ e2sðXÞsðxÞcðxÞ2cðiÞ
� 2sðXÞcðiÞ2cðxÞ3e2sðiÞ þ 5e2sðXÞsðxÞcðiÞ3 � e2sðXÞsðxÞcðiÞ
� 2e2cðiÞ3sðxÞsðiÞcðXÞcðxÞ2

� 5e2cðxÞcðXÞcðiÞ4 � e2cðxÞ3cðXÞcðiÞ2 � 3e2sðXÞsðxÞcðxÞ2cðiÞ3

þ 2sðXÞcðiÞ2cðxÞe2sðiÞ
þ 3e2cðxÞ3cðXÞcðiÞ4 � 2sðXÞsðiÞcðxÞ � 2cðXÞcðxÞcðiÞ4

þ 2sðXÞsðxÞcðiÞ3 þ 2sðXÞsðiÞsðxÞ3 þ 2cðiÞsðxÞsðiÞcðXÞcðxÞ2

� 8sðXÞcðiÞ2sðiÞcðxÞ3

þ 8sðXÞcðiÞ2sðiÞcðxÞ � 8cðiÞ3sðxÞsðiÞcðXÞcðxÞ2sðiÞ
/ 4ð�sðXÞsðxÞ þ cðXÞcðxÞcðiÞÞea4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sðxÞcðiÞðe4 � 1Þ

� �
:

ð54Þ
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This gauge function rate is regular 8�a 2 Mnfi;X;x : cðXÞcðxÞcðiÞ ¼
sðXÞsðxÞ or x ¼ kp; k ¼ 0; 1; 2g and satisfies kQka4=ðlr2eqÞ � OðJ2Þ. The
remaining planetary equations are

_�i ¼ 3

4
J2

req
p

� �2

n tanx sin 2i; ð55Þ

_�e ¼ � 3

2
J2

req
p

� �2

n
f1
f2

tan i

sinx
; ð56Þ

where

f1 ¼½c3ðiÞsðxÞcðXÞcðxÞ � sðXÞc2ðiÞ þ c2ðiÞsðXÞc2ðxÞ�e2 � 4sðXÞcð2iÞ

þ 4c3ðiÞsðxÞcðXÞcðxÞ þ 4c2ðiÞsðXÞc2ðxÞ þ sðXÞ

� sðxÞcðXÞcðxÞcðiÞ � sðXÞc2ðxÞ;
ð57Þ

f2 ¼ �sðXÞsðxÞ þ cðXÞcðxÞcðiÞ: ð58Þ

Equation (55) is singular at x ¼ p=2 and x ¼ 3p=2. Equation (56), on the
other hand, is regular at x ¼ kp, k ¼ 0; 1; 2 and cðXÞcðxÞcðiÞ ¼ sðXÞsðxÞ,
since limx!kp f1= sinx ¼ e2 cos3 i cosX� cosX cos iþ 4 cos3 i cosX; however,
the gauge function rate at these points is infinite. Therefore, there are no
admissible values of orbital elements that can nullify either of Equations (55),
(56) (the equatorial case is excluded due to singularity of the Poisson matrix),
implying that non-osculating eccentricity and inclination variations are al-
ways required to maintain a stationary node, perigee and epoch.

Similarly to the discussion in Section 4.1, the nullification of the nodal,
apsidal and epoch rates has been carried out assuming that the normalized
gauge velocity is, at most, of order J2. This assumption is verified in the
following section.

4.3. ORDER OF MAGNITUDE ANALYSIS FOR THE GAUGE VELOCITY

In this section, we shall present an analysis of the order of magnitude of the
gauge velocity, and show that the normalized gauge velocity is at most of
order J2. Since order of magnitude of the normalized gauge velocity does not
exceed the order of magnitude of the normalized perturbing potential, the
separation of time scales leading to the first-order averaging holds.

To start, recall that the mean gauge velocity �q, defined in Equation (14), is
given by
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�q ¼ Jfð�aÞ _�a; ð59Þ

where Jf ¼ @f=@�a and _�a ¼ ½ _�a; _�e; _�i; _�X; _�x; _�M0�T . The expression for Jf is given by
Equation (31). In the remainder of this section, we shall again drop the bar
and treat the orbital elements as averaged quantities.

The example given in Section 4.1 nullified the mean rotation rate of the
apsi-dal line (argument of perigee rate) in addition to nullifying the mean
rates of the semi-major axis, eccentricity and inclination. The resulting nodal
precession and drift of the mean anomaly were given by Equations (46) and
(47). Substituting these expressions into (59) gives

�q ¼ J2
9

4

req
p

� �2

nae cos i
� sinX cosx� cosX sinx cos i
cosX cosx� sinX sinx cos i

0

24 35: ð60Þ

The magnitudes of the trigonometric functions are upper-bounded by 1, and
thus cannot alter the order of magnitude of the gauge velocity in (60). Thus,
the normalized gauge velocity magnitude satisfies

O k�qk
na

� �
� eJ2OJ2 ð61Þ

and hence the analysis in the Section 4.1 holds for all times, since the original
time scale separation assumption (i.e. _f 	 _X; _x; _M0Þ, enabling the averaging
analysis due to the J2 perturbation is not violated. To illustrate this issue,
consider the following example:

EXAMPLE. Consider an eccentric Earth orbit with low perigee of
800 km, i ¼ 20�, X ¼ 0, x ¼ 90� and e ¼ 0:1. Substitution into Equation (60)
gives

k�qk
na

¼ 1:4027 � 10�4: ð62Þ

For comparison, let us examine the order of magnitude of the J2 averaged
normalized perturbing potential:

R

n2r2eq
¼ J2

4ð1� e2Þ3=2
ð2� 3 sin2 iÞ ¼ 4:5285 � 10�4: ð63Þ

Consequently, not only that the gauge velocity is at most of order J2, but
moreover, it is smaller than the normalized perturbing potential.

A similar analysis of the example in Section 4.2, nullifying the nodal,
apsidal and epoch rates in addition to the semi-major axis rate, yields:
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�q ¼ J2
9

4

req
p

� �2

an

f1 tan ið� cos i sinX sinxþcosx cosXÞ
f2 sinx

�e sinX sinx sin i tanx sin 2i
2

f1 tan iðcos i cosX sinxþcosx sinXÞ
f2 sinx

þe cosX sinx sin i tanx sin 2i
2

f1 tan i sin i
f2

� e sinx cos i tanx sin 2i
2

2664
3775

ð64Þ
where f1ðX;x; iÞ and f2ðX;x; iÞ are bounded functions given by Equations
(57) and (58), respectively. Thus, similarly to Equation (61), we have

O k�qk
na

� �
� J2; ð65Þ

so the gauge velocity components are of order J2, and the underlying
assumption holds for this example as well.

5. Conclusions

This paper developed averaged planetary equations using non-osculating
orbital elements. The excess freedom obtained by transforming from the
inertial space to the orbital elements space, termed gauge freedom, was uti-
lized to nullify four planetary equations.

The gauge freedom considerably broadens our understanding of the non-
Keplerian dynamics. While thus far it has been widely assumed that oscu-
lating orbital elements constitute the most advantageous representation of
perturbed Keplerian dynamics, this paper shows that there are cases where it
is more beneficial to use non-osculating elements.

The gauge formalism may be interpreted as a coordinate transformation,
since it represents an inherent symmetry that exists in the Lagrange planetary
equations. The investigation of this symmetry is a subject of future research,
as well as investigation of short-period effects using gauge-generalized
planetary equations and the incorporation of high-order zonal harmonics.
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