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Abstract

This paper studies the dynamics and stability of a rigid spacecraft subjected to gravity
gradient torques exerted by the Sun and the Earth in the circular restricted three-body prob-
lem. We focus on the dynamics in a close vicinity to the Lagrangian collinear equilibrium
points, and show that the linear stability domain predicted by the Beletskii-DeBra-Delp
method in the two-body problem is modified due to the presence of an additional gravitat-
ing primary. The nonlinear differential equations are derived using a Hamiltonian formalism
and are subsequently investigated using Poincaré maps. The effect of the gravity gradient
torque is accentuated using difference Poincaré maps. The Melnikov integral method is uti-
lized for studying the chaotic behavior of the gravity-gradient-perturbed system.

Introduction

The motion of a mass particle in a gravity field exerted by two massive bodies,
the primaries, which rotate in circular orbits about their common barycenter, is
known as the circular restricted three-body problem (RTBP). This dynamical system
has five equilibrium points, known as the Lagrangian points. Three of these equilibria
are collinear libration points, first found by Euler.

The RTBP has been thoroughly investigated since the late 1960s by Farquhar [1, 2],
Hénon [3], Richardson [4], Gomez et al. [5], Barden and Howell [6], Papadakis [7],
and Perdios [8]. These works studied several types of motions within the center
manifold of the libration points in the circular RTBP. Three main types of periodic
motion were detected: in-plane motion—horizontal Lyapunov orbits; out-of-plane
motion—nearly vertical orbits; and halo orbits—resulting from a bifurcation of the
Lyapunov orbits.
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In the present study, we juxtapose the RTBP and another long-standing problem:
the rotational dynamics of a rigid body. This problem has been studied by mathe-
maticians, astronomers, and engineers over the past three centuries (cf. Gurfil et al. [9]
and references therein).

Recently, there has been a renewed interest in obtaining analytical solutions for
the perturbed rotational motion of an artificial satellite represented by the rigid-
body approximation [10, 11, 12, 13, 14]. In particular, many efforts have been
directed towards studying the effect of the gravity gradient (GG) torque on the
rotational motion of a satellite in the dynamical setup of the two-body problem [15,
16, 10, 11, 17]. Since the effect of the GG torque decreases with altitude, a space-
craft located in the vicinity of the collinear Lagrangian points will be subjected to
very small GG torques, exerted by both primaries. However, the subtle interaction
between the two torques may offer some interesting dynamical features.

Barkin [18] and Kane [19] first derived solutions for some special cases of the
said problem. Elipe [14] suggested to expand the GG perturbation into a Fourier
series. Elipe’s approach advocates approximating the solution since the GG torques
render the rigid-body dynamics extremely difficult for an analytical solution—
mainly because the usual Serret-Andoyer reduction procedure [9, 20] is not valid
due to the presence of the Eulerian angles in the GG expressions. However, to the best
of the authors’ knowledge, thus far there has not been a dynamical-systems-based
study of the nonlinear rotational dynamics of spacecraft perturbed by two GG-torques.
It is this general perspective with which the current work is concerned.

The objective of this work is to examine how significant the influence of the GG
torques is when considering the combined effect of the Sun and the Earth. The
study focuses on the collinear Lagrange points and particularly on the point, as
it is planned to host a number of future missions such as the James Webb Space
Telescope and the multiple spacecraft of the Darwin project.

To gain an initial insight, we start with a linear analysis, used to determine new
regions of stability in the Beletskii-DeBra-Delp sense [15, 16] vis-à-vis the two-
body problem, and then extend it to the full, nonlinear, general problem. A set of
differential equations modeling the rigid-body dynamics are derived based on a
Hamiltonian formalism. A numerical method using the Poincaré section is then
utilized to investigate the nonlinear equations of motion. The Poincaré section tech-
nique is used to trace differences between the torque-free equations of motion and
the GG-perturbed equations. Finally, we use the Melnikov integral method [21] for
identifying chaos.

The Gravity Gradient Torque

We first derive an expression for the GG torque acting on a vehicle in the circu-
lar RTBP setup by assuming that all the bodies are perfectly rigid (no tidal effects
are considered).

Coordinate Systems

There are a few coordinate systems used in the subsequent discussion. The body
frame, , is centered at the spacecraft’s center of mass. The unit vectors, and

coincide with the principal axes as shown in Fig. 1. The frame , as all
the other frames in this work, is a Cartesian, rectangular, dextral frame. The orbital
frame, , is also centered at the body center of mass, oriented such that its third unit
vector, , is directed towards the barycenter; is perpendicular to the plane ofĵLR̂
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motion and completes the triad. The inertial frame, , is centered at the barycenter,
and is defined by the unit vector , directed towards the initial position of the second
primary; , which is perpendicular to the motion plane; and , which completes the
setup, as shown in Fig. 1.

The Gravity Gradient Torque in the Restricted Three-Body Problem

The GG torque, , acting on a mass element, , located at in frame , due
to the presence of a gravitational force, (assuming a uniform mass distribution),
is given by

(1)

We now define the following notation: and are the gravitational constants of
the primaries, and are the position vectors of the primaries in the barycentric
frame, and are the positions vectors of the mass element with respect to the
primaries, and is the position vector of the spacecraft’s center of mass relative to
the barycenter, as shown in Fig. 1. Since

(2)

then
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FIG. 1. A rigid spacecraft is subjected to a gravity gradient torque in the restricted 
three-body problem. The three reference frames used to describe the motion 

are the body frame, the orbital frame, and the inertial frame [22].



As shown in Fig. 1, we can define and , yielding 

Assuming that a binomial approximation gives

Due to the fact that the coordinate system is located at the center of mass

Defining the inertia tensor as yields

(4)

where I is the identity matrix and , so that

(5)

Thus, the gravitational torque exerted by two primaries (the Sun and the Earth in
our subsequent quantitative analysis) on a spacecraft is given by

(6)

Assuming that the spacecraft is fixed to one of the Lagrange collinear libration
points, it will orbit the barycenter in a circular orbit together with the primaries,
moving in a constant angular velocity. Moreover, if the spacecraft is fixed to ,
then the unit vectors and , directed from the spacecraft’s center of mass to the
primaries, will coincide with the unit vector . Thus, (6) will become

(7)

Linear Analysis
The Linear Equations of Motion

Let us write the transformation matrix, A, which transforms from the orbital
frame to the body frame assuming small angles [22]. In the linear approximation,
the rotation sequence is not important, and the resulting matrix is 
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(8)

where , , and are the Euler angles. In order to express in the body frame, we
can use the relationship

(9)

Let us define

, (10)

Substituting into equation (7) and using the small angles assumption gives

(11)

where , , and are the moments of inertia in principal axes. The expression for
is now substituted into Euler’s equations to give

(12)

where is the body angular velocity vector and H is the angular momentum vector.
We now use the relationships

(13)

and

(14)

where the , , and indices refer to the angular velocity of the body frame
with respect to the inertial frame, the body frame with respect to the orbital frame,
and the orbit frame with respect to the inertial frame, respectively. Substitution entails

(15)

where denotes the constant angular velocity of the system, given by

(16)

Substituting equations (13)–(15) into (12), assuming that the moments of inertia are
aligned with the principal axes, and neglecting products of small quantities gives
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̈ � n0�̇
 � n0�̇	I2 � I1
 � n0
2
	I2 � I1
� k̂

 � �I1	�̈ � n0
̇
 � n0
̇	I3 � I2
 � n0
2�	I3 � I2
� î
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Substituting (17) and (11) into (12) leads to the linear equations

(18)

(19)

(20)

where , , and are defined as

(21)

(22)

(23)

and their values are bounded by .
Note that the pitch channel, equation (19), is decoupled from roll (18) and yaw

(20), similarly to the two-body problem.

Stability Analysis

For stability in pitch it is required that . In order to determine the stability
of the roll and yaw dynamics, one should find the roots of the characteristic poly-
nomial generated by equations (18) and (20)

(24)

where

(25)

(26)

Calculating the constants , , and for the point in the Sun-Earth system
yields and , which gives

(27)

Requiring that � be a Hurwitz polynomial gives the inequality

(28)

Requiring positive coefficient for � gives the conditions for stability as
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The stability conditions for the two-body problem depend on the moments of
inertia only. In the three-body case the situation is different, as (24) implies. In gen-
eral, the satellite’s attitude will remain stable if the centrifugal torques balance the
gravitational torques. In the classical, two-body case, this occurs in two regions.
One region is the Lagrange pitch stability region, which is decoupled from yaw and
roll, and the other is the Beletskii-DeBra-Delp region. These regions are determined
by the satellite’s geometry only, as implied by the roll-yaw Beletskii-DeBra-Delp
stability limit of the two-body problem [15, 16]

(30)

Systems with more than one primary have another factor which affects the roll-yaw
inequality and the Beletskii-DeBra-Delp stability region. This factor is [26]

(31)

Figure 2 shows the resulting regions of stability in two different cases: the well-known
stability region of the two-body problem, and the same stability region generalized to
the RTBP. The stability regions in the RTBP are composed from the Lagrange pitch sta-
bility condition, which is similar to the two-body case, and equation (28), the modified
Beletskii-DeBra-Delp region, which has been reduced compared to the two-body case.

The Nonlinear Equations of Motion

In order to derive the general equations of motion, we derive the Hamiltonian
for our dynamical system. This Hamiltonian will be formulated by using Euler
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FIG. 2. Comparison of Beletskii-DeBra-Delp stability regions between the two-body 
and restricted three-body problems. The spacecraft is located at in the 

Sun-Earth system. The shaded regions represent stable motion.
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angles as generalized coordinates. The general expression for the Hamiltonian is
written as

(32)

where represents the Hamiltonian of the free-spin, and is the Hamiltonian
resulting from the GG torques applied by the primaries.

The Free-Spin Hamiltonian

To get the first part of the Hamiltonian, , we assume free rotational motion
and use the Legendre transformation

(33)

where is the Lagrangian, is a generalized coordinate, , ,
and is a conjugate momenta, , , . is thus given by

(34)

The Lagrangian equals the rotational kinetic energy

(35)

The are calculated by
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Thus

; ; (37)

Evaluating equation (34) gives

(38)

The Perturbing Hamiltonian

The second part of the Hamiltonian, , comprises the potentials of both perturb-
ing gravitational torques

(39)

where and are the Hamiltonians due to the GG torques of the first and
second primary, respectively.
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The GG torque potential of the first primary can be calculated as 

(40)

Since , we can expand equation (40) into a Legendre series using Legendre
polynomials up to second-order terms in . This procedure entails

(41)

(42)

The second term in equation (42) has been eliminated due to the fact that the body
frame is centered at the center of mass.

Using the inertia tensor definition and transforming it into principal axes yields
the form known as the MacCullagh formula [23]

where , , and are the direction cosines, to be defined shortly. Utilizing the
identity

(43)

yields

(44)

The perturbing Hamiltonian due to the GG torque applied by the first primary
equals the second term of the potential (44)

(45)

We could use all three terms, that is, take . However, the terms that are not
orientation-depended will be eliminated while deriving the system’s equations of
motion.

The expression for can be evaluated similarly to , so based on equa-
tion (39) we get
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(46)

Rearranging (46) yields

(47)

We now use the definition for the direction cosines as

(48)

(49)

where and are inertial unit vectors and and are unit vectors along the body
principal axes. The rotation matrix from the inertial to the body frame, obtained by
using the 3-1-3 rotation sequence, is given by

(50)

where we have used the shortened notation . To trans-
form the body principal axes into an inertial frame, we write

(51)

(52)

The inertial unit vectors are given by
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(x, y, z) denote the local position of the spacecraft in the orbit rotating frame, and
and are the primaries’ distances from the common barycenter. As shown in

Fig. 3, while pointing to one of the collinear Lagrange points, the vectors , , and
become parallel; thus, while pointing to these vectors are parallel and are

pointing to the same direction.
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FIG. 3. A Spacecraft Fixed to Simplifies the Hamiltonian Formulation of the Equations of Motion.L 2



Now, suppose that the spacecraft mean orbit radius around one of the libration
points is small compared to the distance from the primaries to the selected libration
point, so it can be neglected. Under this assumption, the spacecraft is fixed (geo-
metrically) to the libration point—say . This situation is illustrated by Fig. 3.
The mathematical formulation of this assumption can be written by substituting the
following relationships into equation (54): and

This leads to

(55)

The direction cosines assume the form

(56)

and reduces to

(57)

where

(58)

The Nonlinear Equations of Motion

Hamilton’s equations are
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(60c)

(60d)

(60e)

(60f)

where

(61)

A more compact form of equations (60d)– (60f) can be written as

(62a)

(62b)

(62c)

where , , are the components of angular momentum in the body frame [9]

(63a)

(63b)

(63c)

Poincaré Maps
The Method

Poincaré maps are useful for studying nearly periodic motion. With Poincaré
maps, one can quantitatively determine chaotic regions, and inquire how the chaotic
behavior of the motion evolves from one set of initial conditions to another [24, 25].
A Poincaré map is a cross-section of the phase-space generated by the system flow.
In general, the maps are created by determining a value for the Hamiltonian, setting
the initial conditions for the reduced system, and choosing a Poincaré surface of
section. By doing so, the problem reduces into two degrees of freedom. Broucke [17]
first applied the Poincaré method for studying the phase space of perturbed attitude
dynamics in the two-body problem. Broucke’s work did not study the GG-perturbed
attitude dynamics, but rather the rotational dynamics induced by a misalignment
between the center of mass and the center of gravity.
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Using Poincaré maps in order to generate Poincaré sections could be helpful
when it is difficult to qualitatively study the dynamical system based on its phase
space only, and when the perturbation affecting the system is relatively small in
comparison to the unperturbed dynamics. In the present problem, both of these fea-
tures exist. We will therefore use the the Poincaré section method in order to study
the nonlinear problem.

An important caveat is that during the numerical integration of equations (60),
performed using an eighth-order Runge-Kutta integrator, the Hamiltonian might
not remain constant due to numerical errors arising from the dissipative nature of
the Runge-Kutta algorithm. These errors cause secular growth in the state
variables. In order to mitigate this effect, the least squares method was used to
“symplify” the Runge-Kutta integrator in each time step, thus yielding a constant
Hamiltonian.

Numerical Results

The Poincaré maps were generated for a spacecraft stationed at the Sun-Earth
point with at the section . The initial conditions were

and . The additional initial conditions were chosen
as follows. We distinguish between two cases, each having different moments of in-
ertia. For Case I,

(64)

with the initial conditions lying in the range ,
. This case satisfies the linear stability conditions (29). For Case II,

(65)

with the initial conditions , .
This case does not satisfy the linear stability conditions (29).

The remaining initial condition, , is determined by solving the energy equation

(66)

for .
Figures 4 and 5 depict the Poincaré maps for Case I and Case II, respectively. In

Fig. 4, there are distinct regions of quasi-periodic motion. This finding corresponds
to the reduced phase space, wherein one can observe libration, rotation, and a
separatrix connecting the stable and unstable equilibria [9]. In Fig. 4, one can also
observe two hyperbolic points. The color in both maps is used to distinguish
between short-periodic and long-periodic motion, and is indicative of the time it
takes for a given trajectory to cross the section.

In general, the motion of a free rigid body is quasi-periodic, being a superposition
of rotation and precession. This corresponds to invariant 2-tori in the phase space.
In the present work, it seems as if the presence of the GG torque has not qualita-
tively changed this behavior. This, however, is not true; since the GG torques are
extremely small, it is somewhat difficult to distinguish between the maps shown in
Figs. 4 and 5 and the nominal maps of the free-spin case. In order to accentuate the
effect of the GG perturbations, we shall examine the difference Poincaré maps,
which are the maps obtained by subtracting the Poincaré maps of the free-spin case
from the maps of the GG-perturbed dynamics.

�0

H � 
̇ 0�0 � 	̇ 0�0 � �̇0�0 � L � HG

�0

�375 � �0 � 375 kg m2�sec��2 � 
0 � 3��2 rad

I3 � 1400 kg m2I2 � 800 kg m2,I1 � 1600 kg m2,

225 kg m2�sec
�225 � �0 ���2 � 
0 � 3��2 rad

I3 � 600 kg m2I2 � 1400 kg m2,I1 � 1200 kg m2,

�0 � 10 kg m2�sec�0 � 0.05 rad
	 � 3��2H � 50 N � mL 2
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Difference Poincaré Maps

To understand the rationale of the difference maps, let and be solutions
of the differential equation (60f) for the unperturbed and perturbed cases, respec-
tively. Then, each point on the difference map satisfies

(67)

In a similar manner, the conjugate momentum difference is

(68)��i � �i � �̃i

�
i � 
i � 
̃ i


̃	t

	t
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FIG. 4. A Poincaré map for Case I shows region of quasi-periodic motion. Red trajectories 
on the map indicate long-periodic motion, while blue indicates short-periodic 

motions. The time units of the color bar are seconds.

FIG. 5. A Poincaré map for Case II shows regions of quasi-periodic motion and hyperbolic 
points. Red trajectories on the map indicate long-periodic motion, while blue 
indicates short-periodic motions. The time units of the color bar are seconds.



and the section cross time difference is

(69)

Figures 6 and 7 depict the difference maps for Case I and Case II, respectively. Due
to the very small magnitude of the perturbation, these maps represent, in fact, the
linearized phase space, and can hence be studied from the linear dynamical systems
perspective.

Both Figs. 6 and 7 show zero initial differences between the perturbed and
unperturbed cases. As the flow evolves, the differences are spirally growing. While
the trajectory in Fig. 7 represents a spiral node, the trajectory in Fig. 6 converges
onto a limit cycle. This confirms the findings of the linear analysis; Case I is stable
and Case II is unstable. Consequently, the spacecraft can be passively stabilized on the
collinear point under some constraints on its shape, similarly to the two-body case.

A delicate issue that deserves special attention is the existence of the heteroclinic
connection, shown in Fig. 4. This implies that under small periodic perturbations,
such as the GG torques, a heteroclinic or horseshoe chaos may arise [13]. The next
section is devoted to studying this issue using the Melnikov integral.

Detecting Chaos by the Melnikov Integral

The small magnitude of the perturbing GG torques allows for the reformulation
of the Hamiltonian (32) into

(70)

where . Thus, if , then, based on equations (59),
equations (60) can be written as

(71)

where f and g are Hamiltonian vector fields that describe, respectively, the un-
perturbed motion and the perturbation. When the equations of motion are written in
the form of equation (71), the existence of chaos can be determined by using the

ẋ � f � �g

x � ��, �, �, 
, 	, ��T� � 1

H � H0 � �H �
G

�ti � t�i � t�̃i
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FIG. 6. A difference Poincaré map for Case I shows that the GG-perturbed motion 
converges onto a stable limit cycle. In this case, passive stabilization is possible.



sufficient conditions of the Smale-Birkhoff theorem [26, 27]. According to this
theorem, if the manifolds and generate a diffeomorphism that contains
a hyperbolic point, a chaotic behavior will be observed if transverse homoclinic
points appear by the manifolds intersections [28, 29].

The Melnikov method [30] provides a simple, analytical test for the existence of
chaos in the Smale-Birkhoff sense [28, 21]. This method is commonly used for
determining chaos in ubiquitous applications, including quasi-periodically-forced
[31, 32, 33] and periodically-excited [13, 34, 35] systems. In Hamiltonian systems
such as equations (70)– (71), the Melnikov method can be used to determine if the
stable and unstable manifolds intersect transversally by calculating the simple zeros
of the Melnikov integral

(72)

In equation (72), denotes the Poisson brackets, and is the separatrix. If
contains simple zeros, then transverse homoclinic points exist and the system

will be chaotic according to the Smale-Birkhoff theorem.

Rendering the Perturbing Hamiltonian Amenable to Melnikov’s Method

To utilize the Melnikov method, we must first find an expression for the separatrix,
(cf. equation (72)). The separatrix equations are known [11], and were formulated

by Elipe [14] in terms of the angular momentum components in the body frame as

(73a)

(73b)

(73c) ḡ3 � H��I2 � I1

I3 � I1
� 

I3

I2
 sech	�t
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FIG. 7. A difference Poincaré map for Case II shows that the GG-perturbed motion 
yields a spiral node. In this case, passive stabilization is impossible.



where

(74)

and H is the magnitude of the angular momentum vector

(75)

In order to solve the Melnikov integral (72), all the Poisson brackets with respect
to the angular momentum components should be obtained. To that end, we first
write an expression for the free-spin Hamiltonian in terms of the angular momen-
tum components [14] as

(76)

The second step is to derive a convenient form of the perturbing Hamiltonian, ; that
is, we must replace (57) by a form that is amenable to the symbolic calculation of the
Melnikov integral. One method of achieving this is to approximate equation (57) by a
time-periodic function having the same dominant frequency as the original, periodic,
perturbing Hamiltonian. To that end, using equations (57) and (70), we first write

(77)

where

(78)

and then attempt to find an approximation of the form

(79)

where , , and are constants to be determined.
Thus, the true and approximated nondimensional perturbing Hamiltonians,

respectively, are

(80)

(81)

Figure 8 depicts a comparison between the actual and approximated perturbing
Hamiltonians. The time history of the approximating Hamiltonian was plotted with
the amplitude , frequency and . As can
be seen, the approximation captures well the dominant frequency of the true perturb-
ing Hamiltonian, and hence can be safely used for calculating the Melnikov integral.

Solving the Melnikov Integral

After obtaining an approximation for the perturbing Hamiltonian, we can pro-
ceed by calculating the Poisson brackets appearing in equation (72) as
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(82)

Since depends on only, and, according to equations (63c) , all the
terms in equation (82) vanish except for those which directly depend on and its
conjugate momentum, , giving

(83)

We can expand equation (83) into

(84)

which simplifies into
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FIG. 8. Comparison Between the Actual Perturbed Hamiltonian and the Analytical 
Approximation Thereof Shows Good Agreement.



We can construct the Melnikov integral by substituting (73) and (85) into (72)

(86)

Rearranging equation (86) yields

(87)

The integrand appearing in equation (87) is an odd function, and the integral solu-
tion equals zero. We can thus conclude that the integral, as a function of , has at
least one simple zero. This observation is sufficient to determine that the GG per-
turbations in the circular RTBP give rise to chaos. To validate this observation, the
Melnikov integral may be plotted as a function of . Such a plot is shown in Fig. 9.
We can conclude by observing in Fig. 9 that the Melnikov function intersects the

line periodically; the intersection points are the simple zeros of .

Conclusions

This work studied the effect of gravity gradient (GG) torques in the circular
restricted three-body problem (RTBP). It has been found that the total perturbation
torque exerted by the two primaries can be considered as a superposition of two
separate gravitational torques. 

Linearized Euler equations were derived and stability analysis in the Beletskii-
DeBra-Delp sense was preformed for the collinear Lagrange point in the Sun-Earth
setup. It has been shown that the Beletskii-DeBra-Delp stability region is smaller in
the current problem compared to the two-body problem for the Sun-Earth . L 2
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FIG. 9. The Melnikov integral as a function the parameter . The -axis 
crossings are the simple zeros of the Melnikov function.

M	t0
t0



In order to derive the nonlinear equations of motion, a Hamiltonian formalism
was adopted. The perturbed Hamiltonian was developed for the circular RTBP
assuming that the spacecraft is located at the vicinity of the point. Due to the com-
plex structure of the dynamics, Poincaré maps were used to quantify the phase space
trajectories. Difference Poincaré maps, obtained from subtracting the free-spin maps
from the perturbed maps, have validated the results of the linear analysis.

One of the main findings was the analytical proof for the existence of chaos using
Melnikov’s method. Thus, the dynamics of a spacecraft perturbed by the gravita-
tional torques of two primaries will necessarily exhibit chaos. Using Melnikov’s
approach was essential since the effect of the GG perturbation is extremely small;
hence, alternative approaches such as calculating the Lyapunov exponents or
detecting chaotic seas in the Poincaré maps are bound to fail.
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